

UNIVERSIDAD AUTÓNOMA DE CHIAPAS

Facultad de Ingeniería Coordinación de Investigación y Posgrado

"APROVECHAMIENTO DEL BIOGÁS PRODUCIDO EN LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES PASO LIMÓN EN TUXTLA GUTIÉRREZ, CHIAPAS."

TESIS QUE PARA OBTENER EL GRADO DE: Maestro en Ingeniería con formación en Calidad del Agua

PRESENTA: RAMÓN CORZO TOLEDO 13012007

DIRECTOR DE TESIS

DRA. DAISY ESCOBAR CASTILLEJOS

TUXTLA GUTIÉRREZ, CHIAPAS; MAYO 2021.

Tuxtla Gutiérrez; Chiapas. A 14 de junio del 2021 Oficio. Fl. 01/938/2021

C. Ramón Corzo Toledo Maestría en Ingeniería con formación en Calidad del Agua P r e s e n t e.

Por este medio comunico a usted, que se autoriza la impresión de su trabajo de tesis denominado: "Aprovechamiento del biogás producido en la Planta de Tratamiento de Aguas Residuales Paso Limón en Tuxtla Gutiérrez, Chiapas", para que pueda continuar con los trámites de titulación para la obtención del Grado de la Maestría en Ingeniería con formación en Calidad del Agua.

Sin otro particular, reciba un cordial saludo.

Atentamente.

"Por la conciencia de la necesidad de servir"

Dr. José Alónso Figueroa Gallegos Encargado de Dirección

DIRECCIÓN DE LA FACULTAD DE INGENIEF!

C. c. p. Dra. Daisy Escobar Castillejos. Coordinadora de Investigación y Posgrado. - F.I. Archivo Minutario. JAFG/DEO/topg*

Tels. (961) 617-80-00 ext. 1560. (961) 615-03-22. www.ingenieria.unach.mx

Roulevard Relisario Domínouez Km 1081. Sin Número | Terán Tuytla Gutiérrez: Chianas. México. C.P. 29050. | www.unach.mx

Código: FO-113-09-05 Revisión: 0

CARTA DE AUTORIZACIÓN PARA LA PUBLICACIÓN ELECTRÓNICA DE LA TESIS DE TÍTULO Y/O GRADO.

El (la) suscrito (a) C. Ramon Corze Toleclo

Autor (a) de la tesis bajo el título de "Aprovechamiento del brogas producido en la Planta de Tratamiento de Aguas Residuales Pasa Limón en Tuxtla Gutrérrez, Chia pas "

presentada y aprobada en el año 20 21 como requisito para obtener el título o grado de la Maestria en Ingenieria con formación en Calidad del Agua autorizo a la Dirección del Sistema de Bibliotecas Universidad Autónoma de Chiapas (SIBI-UNACH), a que realice la difusión de la creación intelectual mencionada, con fines académicos para que contribuya a la divulgación del conocimiento científico, tecnológico y de innovación que se produce en la Universidad, mediante la visibilidad de su contenido de la siguiente manera:

- Consulta del trabajo de título o de grado a través de la Biblioteca Digital de Tesis
 (BIDITE) del Sistema de Bibliotecas de la Universidad Autónoma de Chiapas (SIBI-UNACH) que incluye tesis de pregrado de todos los programas educativos de la
 Universidad, así como de los posgrados no registrados ni reconocidos en el
 Programa Nacional de Posgrados de Calidad del CONACYT.
- En el caso de tratarse de tesis de maestría y/o doctorado de programas educativos que sí se encuentren registrados y reconocidos en el Programa Nacional de Posgrados de Calidad (PNPC) del Consejo Nacional del Ciencia y Tecnología (CONACYT), podrán consultarse en el Repositorio Institucional de la Universidad Autónoma de Chiapas (RIUNACH).

Tuxtla Gutiérrez, Chiapas; a los 10 días del mes de Octubre del año 20 21.

Nombre y firma del Tesista o Tesistas

Boulevard Belisario Dominguez Km 1081, Sin Número. Terán. Tuxtla Gutiérrez, Chiapas. México. C.P. 29050 Teléfono (961) 615 55 64 y (961) 615 13 21 www.bibioleca.unach.mix.arturo.sanchez/@snach.mix

Dedicatorias

Dedico esta tesis a mi pequeño Caleb, por ser un ser humano muy especial, por enseñarme que a pesar de las limitantes uno puedo lograr grandes cosas hasta convertirse en milagros, y por centrarme en lo más importante de esta vida "La familia". Por cual, tengo la certeza que no hay límites para alcanzar todo lo bueno que deseamos, a pesar de los desafíos que se nos presenta en el camino. Gracias Caleb por los milagros que Dios nos mostró a través de ti.

Agradecimientos

Agradezco a Dios por darme la oportunidad de lograr este reto en mi vida y en especial a las personas que me han brindado el ánimo y soporte para hacerlo.

A mi esposa Georgina por brindarme el apoyo para hacerlo y a mis hijos Leyla y Abdul por inspirarme; al Ing. Jorge Zavala Peña por su disposición en proporcionar y brindar la información necesaria, al Ing. José de Jesús Morales Gómez por autorización para realizar la tesis en la Planta de tratamientos de aguas residuales Paso Limón de SMAPA en Tuxtla Gutiérrez.

A la doctora Daisy Escobar Castillejos por su confianza y optimismo en sus alumnos.

Índice

Dedicatorias	4
Agradecimientos	5
Índice	6
Capítulo 1Introducción	9
1.1 Justificación	9
1.2 Objetivo General	10
1.2.1 Objetivos Particulares	10
1.3 Antecedentes	11
1.3.1 Descripción del Área de Estudio	11
1.3.2 Descripción de la PTAR-Paso Limón	16
1.3.3 Condiciones de Operación de la PTAR-Paso Limón	31
Capítulo 2. Revisión de la Literatura	38
2.1 Biodigestión Anaerobia y Sistemas de Generación	38
2.1.1 Generación anaerobia	38
2.1.2 Biodigestores	41
2.2 Uso del Biogás (Gas Metano)	49
2.2.1 Biogás	49
2.2.2 Uso del Biogás	52
2.2.3 Tratamiento del Biogás en Función del Uso	53
2.3 Estudios de Uso y Tratamiento del Biogás	66
Capítulo 3. Metodología	69
3.1 Producción de Gas Metano y Rendimiento del Proceso	69
3.2 Generación de Electricidad	69

3.3 Cálculo para la Reducción de Gases de Efecto Invernadero (GEI)	70
Capítulo 4. Resultados	73
4.1. Determinación de la Cantidad de Producción de Gas Metano	73
4.2. Generación de Electricidad	73
4.3. Cálculo para la Reducción de Gases de Efecto Invernadero (GEI)	77
4.4. Método de Purificación del Biogás para su Aprovechamiento en la Generación de	!
Energía Eléctrica en la PTAR- Paso Limón	78
Capítulo 5. Conclusiones y Recomendaciones	80
5.1. Conclusiones	80
5.2. Recomendaciones	81
5.3. Limitaciones	82
Capítulo 6Referencias	84
Capítulo 7Anexos	88
Índice de tablas y figuras	
Tabla 1 Clasificación de los digestores de acuerdo a sus características y tecnología	41
Tabla 2 Biodigestores más comunes	42
Tabla 3 Composición y características del biogás	51
Tabla 4 La separación de compuestos de acuerdo al uso del gas	54
Tabla 5 Volúmenes promedios diario de biogás producido en la PTAR-Limón	73
Tabla 6 Potencial energético promedio diario de biogás producido en la PTAR-Limón	74
Tabla 7 Consumo de energía eléctrica mensual y diaria en la PTAR-Limón	76

Figura 1 Mapa municipal de Tuxtla Gutiérrez, Chiapas	11
Figura 2 Tipo de climas	12
Figura 3 Precipitación media	13
Figura 4 Tipos de vegetación	14
Figura 5 Hidrología	15
Figura 6 Viviendas particulare habitadas que no disponen con drenaje	16
Figura 7 Planta de tratamiento de aguas residuales Paso Limón	17
Figura 8 Cribado grueso	18
Figura 9 Equipos de bombeo del agua residual	19
Figura 10 Desarenadores de flujo vertical	20
Figura 11 Clarificador primario	21
Figura 12 Filtro percolador	22
Figura 13 Clarificador secundario	24
Figura 14 Desinfección	25
Figura 15 Generación de hipoclorito	26
Figura 16 Descarga del agua tratada	27
Figura 17 Espesamiento de los lodos	28
Figura 18 Reactor anaerobio	29
Figura 19 Filtro prensa	30
Figura 20 Llegada del agua residual a la planta de tratamiento	32
Figura 21 Proceso de tratamiento de las aguas residuales	34
Figura 22 Proceso de los lodos al biodigestor	36
Figura 23 Fases de la digestión anaerobia y los microorganismos que intervienen	40
Figura 24 Clasificación de los biodigestores anaerobios	44
Figura 25 Usos del biogás	52
Figura 26 Tratamiento del biogás en función del uso	53
Figura 27 Sistema de tratamiento de gas mediante absorción en solución acuosa	60
Figura 28 Potencial energético promedios de biogás producido en la PTAR-Limón	75
Figura 29 Porcentaje de autoabastecimiento de energía eléctrica en la PTAR-Limón	77

Capítulo 1.-Introducción

1.1 Justificación

La Planta de Tratamiento de Aguas Residuales (PTAR)-Paso Limón, en su reactor anaerobio genera biogás como parte del proceso fermentativo en el tratamiento de las aguas residuales; la materia orgánica se convierte en metano, bióxido de carbono y sulfuro de hidrógeno en ausencia de oxígeno y con la interacción de diferentes poblaciones bacterianas. Este biogás, puede producir un olor ofensivo, y debido a que es inflamable, es quemado al ambiente como parte del sistema de recolección, tratamiento y disposición final del biogás, y de los gases generados.

Sin embargo, en el trayecto de la operación, la empresa ha tenido que parar equipos durante algunas horas con la finalidad de eficientar el presupuesto y debido a problemas externos, permitiendo con ello que el proceso de tratamiento sea menos eficiente.

Se puede dar un mejor aprovechamiento al gas metano como una fuente de energía alterna; sin embargo, se necesita determinar si cumple con las condiciones necesarias para su uso y, de esta manera tener para la planta una independencia energética. De igual forma, se convierte este producto de desecho en una fuente de ingreso o ahorro, creando una energía renovable, permitiendo además, reducir la concentración de metano en el ambiente y obtener beneficios en la reducción de los gases de efecto invernadero.

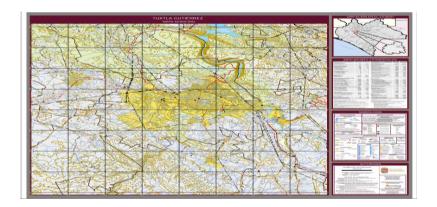
Finalmente, crea empleos asociados a la construcción y funcionamiento del proyecto de aprovechamiento del biogás producido en la PTAR-Paso Limón; y así también mejora la imagen de la ciudad de Tuxtla Gutiérrez, llegando a considerarse como innovadora y sostenible.

1.2 Objetivo General

Realizar un análisis del aprovechamiento del biogás producido en la Planta de Tratamiento de Aguas Residuales - Paso Limón en Tuxtla Gutiérrez, Chiapas.

1.2.1 Objetivos Particulares

- Determinar la cantidad de biogás producido del reactor anaeróbico de la PTAR –Paso Limón.
- 2. Cuantificar la cantidad de energía eléctrica que se puede generar con el biogás producido.
- 3. Analizar la posibilidad del uso del gas metano, como fuente de energía eléctrica, con la información del consumo de energía eléctrica en la operación de la PTAR –Paso Limón

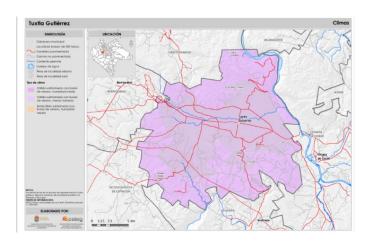

1.3 Antecedentes

1.3.1 Descripción del Área de Estudio

El área de estudio se ubica en la Región Socioeconómica I METROPOLITANA. Limita al norte con San Fernando y Osumacinta, al este con Chiapa de Corzo, al sur con Suchiapa y al oeste con Ocozocoautla de Espinosa y Berriozábal. Las coordenadas de la cabecera municipal son: 16°45′11" de latitud norte y 93°06′56" de longitud oeste y se ubica a una altitud de 522 metros sobre el nivel del mar. Con una superficie territorial de 334.61 km² ocupa el 0.45% del territorio estatal como se ve en la Figura 1.

Figura 1

Mapa municipal de Tuxtla Gutiérrez, Chiapas


Nota: El área en color amarillo fuerte corresponde a la zona urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas,

2018.http://www.ceieg.chiapas.gob.mx/productos/files/PERFILES/Mapa_Base/101.pdf Dominio Público.

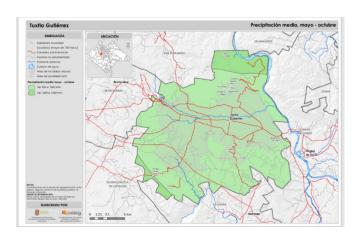
Clima. En este municipio existen diferentes climas: Cálido subhúmedo con lluvias de verano, menos húmedo (99.97%), cálido subhúmedo con lluvias de verano, humedad media (0.03%), semicálido subhúmedo con lluvias de verano y humedad media (0%) como se ve en la figura 2.

Figura 2

Tipo de climas

Nota: El área en color morado es un clima con cálido subhúmedo con lluvias de verano. Humedad media en la zona urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas, 2018.

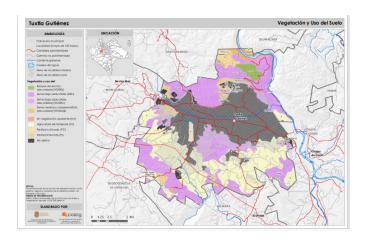
http://www.ceieg.chiapas.gob.mx/productos/files/PERFILES/Climas/101.pdf. Dominio Público.


En los meses de mayo a octubre, las temperaturas mínimas promedio se distribuyen porcentualmente de la siguiente manera: de 15 a 18 °C (7.22%), de 18 a 21 °C (92.46%) y de 21 a 22.5 °C (0.33%). En tanto que las máximas promedio en este periodo son: de 27 a 30 °C (9.16%), de 30 a 33 °C (80.7%) y de 33 a 34.5 °C (10.14%). Durante los meses de noviembre a

abril, las temperaturas mínimas promedio se distribuyen porcentualmente de la siguiente manera: de 12 a 15 °C (98.28%) y de 15 a 18 °C (1.72%). Mientras que las máximas promedio en este mismo periodo son: de 24 a 27 °C (6.97%), de 27 a 30 °C (47.24%) y de 30 a 33 °C (45.79%).

La precipitación media durante los meses de mayo a octubre, es: de 900 a 1000 mm (91.41%) y de 1000 a 1200 mm (8.59%). Así también en los meses de noviembre a abril es: de 25 a 50 mm (67.65%), de 50 a 75 mm (16.93%), de 75 a 100 mm (7.6%), de 100 a 125 mm (2.36%), de 125 a 150 mm (2.91%) y de 150 a 200 mm (2.55%) como se ve en la figura 3.

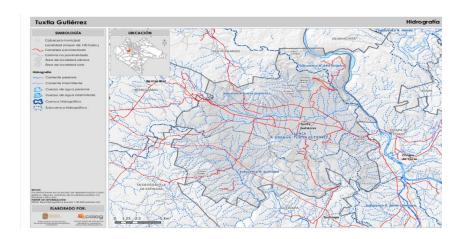
Figura 3


Precipitación media

Nota: El área en color verde claro corresponde a la precipitación de 900 a 1000 mm en la zona urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas, 2018. http://www.ceieg.chiapas.gob.mx/perfiles/img/mapas/Precipitacion/mayo-octubre/101.pdf. Dominio Público. **Vegetación.** La cobertura vegetal y el aprovechamiento del suelo en el municipio se distribuye de la siguiente manera: Selva baja caducifolia (secundaria) (32.28%), Agricultura de temporal (29.18%), No aplicable (29.09%), Pastizal inducido (3.52%), Pastizal cultivado (1.65%), Bosque de encino (secundaria) (1.43%), Sin vegetación aparente (1.26%), Selva mediana subperennifolia (secundaria) (0.88%) y Selva baja caducifolia (0.71%) como se ve en la figura 4.

Figura 4

Tipos de vegetación

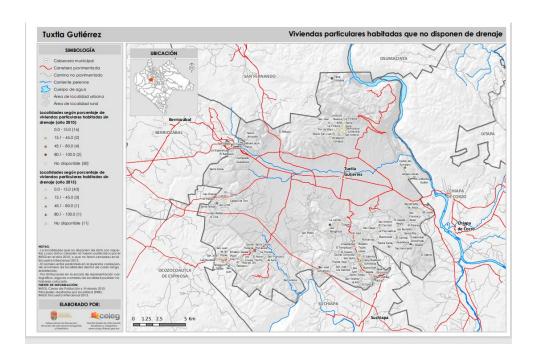

Nota: El área corresponde a bosque de encino, selva baja caducifolia, selva mediana subperennifolia en la zona urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas, 2018. http://www.ceieg.chiapas.gob.mx/productos/files/PERFILES/Vegetacion/101.pdf. Dominio Público.

Hidrología. El municipio se encuentra dentro de las subcuencas Tuxtla Gutiérrez, Río Suchiapa, Río Alto Grijalva y Río Santo Domingo que forman parte de la cuenca Río Grijalva

- Villahermosa. Algunas de las corriente de agua principales son: Río Grijalva, Arroyo San Agustín y Arroyo El Sabinal; y las corrientes intermitentes: Arroyo De La Lanza, Arroyo El Recreo, Arroyo Limón, Arroyo Guadalupe, Arroyo San Francisco, Arroyo Yatipak, Arroyo Totopoztle, Arroyo Zapotal, Arroyo Grande y Arroyo El Sope como se ve en la figura 5.

Figura 5

Hidrología



Nota: El área corresponde a bosque de encino, selva baja caducifolia, selva mediana subperennifolia en la zona urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas, 2018. http://www.ceieg.chiapas.gob.mx/productos/files/PERFILES/Hidrografia/101.pdf. Dominio público.

Así también en el municipio de Tuxtla Gutiérrez se logra detectar algunas zonas que todavía no cuentan con drenaje como se ve en la figura 6.

Viviendas particulares habitadas que no disponen con drenaje

Figura 6

Nota: La imagen muestra zonas sin drenaje, que se encuentran la mayoría en las orillas del área urbana de Tuxtla Gutiérrez. Reproducido de "Perfiles municipales" por Inegi y Gobierno de Chiapas, 2018. http://www.ceieg.chiapas.gob.mx/productos/files/PERFILES/Sociodemografico/Vivienda_drenaje/101.pdf. Dominio Público. Sin derecho reservado por el Licenciatario. Reproducido con el permiso del autor.

1.3.2 Descripción de la PTAR-Paso Limón

La planta de tratamiento de aguas residuales de Pasó Limón (PTAR-Paso Limón) construida en el 2004 y rehabilitada del 2013 al 2015, e iniciando su operación de manera continua a partir de abril 2015; actualmente se encuentra operando continuamente las 24 horas del día, con una capacidad a tratar de 800 litros de agua residual por segundo, y dando este

servicio a la parte poniente y oriente de la ciudad de Tuxtla Gutiérrez como se muestra en la figura 7. El proceso de operación es el siguiente:

Planta de tratamiento de aguas residuales Paso Limón

Figura 7

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Pretratamiento. Es la primera etapa del proceso de tratamiento que se hacen en la PTAR- Paso Limón. El agua residual proveniente de la parte poniente y oriente de la ciudad de Tuxtla Gutiérrez, ingresa mediante un canal de llegada de forma parabólica en su primer parte; y posteriormente continua de forma rectangular. El pre tratamiento contiene un sistema de cribado grueso de barras verticales de acero inoxidable de 15 centímetros de separación, en el cual se retiene los sólidos mayores de 15 cm. En esta parte el personal operativo se encarga de realizar la extracción de forma manual de todo lo que en esta etapa se retenga posteriormente es

extraída y depositadas para su retiro final, después de esa etapa continúa un sistema de cribado grueso, a través de barras verticales de 6 mm de separación, en la planta se cuenta con dos cribas automáticas y una criba manual. Las cribas automáticas operan a través de un sensor de nivel, que están programadas mediante un timer de paro y de arranque, o por niveles como se observa en la figura 8. Cuando hay cierta acumulación de los sólidos se recogen en costales, para después depositarse a un sitio adecuado. El agua que ingresa a través de las cribas gruesas es conducida posteriormente a través de 3 canales de conducción hacia el cárcamo de bombeo.

Figura 8

Cribado grueso

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Cárcamo de Bombeo. El cárcamo de bombeo recibe el agua que pasó a través de un cribado grueso, y este cárcamo está provisto de 6 equipos de bombeo tres sumergibles de 135 hp y tres verticales de 125 HP de capacidad para operar 800 litros por segundo como se muestra en la figura 9. Estos equipos sirven para elevar el agua al sistema de desarenadores.

Figura 9

Equipos de bombeo del agua residual

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Desarenadores. En la parte del proceso del pretratamiento se encuentran los desarenadores, estos desarenadores son de flujo horizontal aireados, que consisten de 4 tolvas de forma cónica; las tolvas están provistas de mecanismos que permite hacer la extracción de las arenas mediante un flushing de aire a presión y flushing de agua a presión y un mecanismo que se llama a airlift. Las arenas extraídas se conducen a un equipo llamado clasificador o

lavador de arenas, este equipo está provisto de un tornillo sin fin, el cual hace la separación de las arenas y el agua. Esas arenas son acumuladas o depositadas en costales para después realizar su retiro. El agua después de pasar por los desarenadores es conducida a dos cribas automáticas de placas perforadas de 6 mm de separación y una criba manual de 6 mm. Esas cribas al igual que el cribado grueso operan mediante un sensor de nivel y se puede controlar la forma de cómo operarlo, tiene un nivel de arranque y un nivel de paro como se observa en la figura 10. Los sólidos que son retenidos en la criba son impactados con un compactador y a través de una tubería son conducidos a un contenedor, para después retirarse. Posteriormente el agua es enviada a dos clarificadores primarios en dos trenes paralelos.

Figura 10

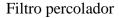
Desarenadores de flujo vertical

a)Vista en la llegada del agua residual y arena al cribado

Fuente: Elaboración propia.

b)Extracción de las arenas

Clarificador Primario. El agua proveniente de los desarenadores y cribado fino, ingresa a los dos calificadores primarios. Los clasificadores primarios son estructuras circulares de 30 m de diámetro y aproximadamente 7 m de tirante, con un volumen de 4,950 metros cúbicos y de 3,900 metros cúbicos respectivamente. El agua ingresa por la parte del centro, la estructura contiene un motor reductor en el centro, el cual hace girar a una rastra, y esta a su vez va recolectando los sólidos que se puedan sedimentar por su propio peso hacia el fondo; cómo la parte inferior es de forma cónica, los sólidos son conducidos hacia el centro para posteriormente ser extraído por un mecanismo de bombeo como se muestra en la figura 11. El agua clarificada vierte a través de un canal perimetral, para después ser conducido al tratamiento biológico. Alguna de las actividades operativas de esta estructura, consiste en limpieza del canal perimetral y de los vertedores, y la inspección periódica del funcionamiento de la rastra, así como revisar periódicamente que los equipos de bombeo funcionen adecuadamente.


Figura 11
Clarificador primario

Fuente: Elaboración propia.

Filtros Percoladores. El agua proveniente de los calificadores es alimentado por gravedad a los filtros percoladores, estos filtros son biotorres de forma circular 30 m de diámetro, qué esta relleno de un material sintético de PVC. La estructura cuenta con un mecanismo provisto en el centro, el cual hace girar a cuatro brazos distribuidores, esos cuatro brazos van alimentando a todo el medio del soporte como se muestra en la figura 12; en este crecen los organismos que degradan la materia disuelta en el agua residual. A parte de estar alimentando, la estructura está provista de cuatro ventiladores que operan y que le inyectan aire, para que las bacterias operen de forma correcta o de mejor forma.

Figura 12

a)Vista lateral

b)Vista Superior

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Entre las actividades operativas que se realizan estructura, está la revisión rutinaria diaria para observar la operación del mecanismo, que no se encuentre en ningún momento parado, o asegurarse de que no se vean basura que provienen de los primarios, si como periódicamente realizar un mantenimiento. El agua que pasa a través del medio de soporte sale a través de canales conocido como falso fondo, y que van a dar al cárcamo de recirculación, tiene dos equipos de bombeo para poder recircular como máximo el 30% del agua tratada, el resto del agua residual pasa al siguiente proceso de tratamiento.

Clarificadores Secundarios. El agua proveniente de los filtros percoladores llega a los clarificadores secundarios. De estos equipos, uno es de forma circular, el cual es alimentado por gravedad, cuenta con un mecanismo de rastras en el fondo, que va barriendo todo lo que se retiene de los filtros percoladores; la materia desprendida de los filtros es retenida en los sedimentadores secundarios, el mecanismo de arrastre hacia el fondo lo conducen hacia el centro y posteriormente extraído con 3 equipos de bombeo. El agua clarificada se vierte sobre el perímetro de la estructura para ser conducida al sistema de desinfección. El otro clarificador secundario, es de forma rectangular y se utiliza también para retener la materia que se desprende de los filtro percolador, el mecanismo de extracción de los lodo es a través de un mecanismo llamado claribac como se observa en la figura 13. Los lodos retenidos son conducidos a un canal perimetral y después extraídos a través de bombeo para su debido tratamiento.

Figura 13

Clarificador secundario

a)Rectangular

b)Circular

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Desinfección. El agua proveniente de los clarificadores secundarios llega a los tanques de desinfección. Los tanques son de tipo flujo pistón, se le inyecta hipoclorito de sodio generado en el sitio. El hipoclorito de sodio, cumple con la normatividad con la cual se diseñó la planta como se muestra en la figura 14. En esta etapa final, es en donde se eliminarán los organismos patógenos que se encuentran en las aguas ya tratadas. Conforme a la Norma NOM-001-SEMARNAT- 1996, los microorganismos patógenos que se encuentran en las aguas tratadas, es de 1000 como número más probable (NMP) de coliformes fecales por cada 100 ml para el promedio mensual o diario, lo cual se debe de asegurar en cumplir de acuerdo a la norma, a través del desinfectante, qué es el hipoclorito de sodio.

Figura 14

Desinfección

a)Vista lateral

b)Vista frontal

Fuente: Elaboración propia.

Generación de Hipoclorito de Sodio. Se genera el agente desinfectante hipoclorito de sodio, el cual se obtiene mediante una mezcla de agua más sal, con un 99% de pureza. El agua de la red de SMAPA, se le da un tratamiento de eliminación de la dureza o materiales minerales como magnesio y calcio, para no dañar los equipos generadores de hipoclorito. Se hace una solución sobresaturada de agua y sal, una vez que se tiene esa solución, se pasa a través del equipo generador de hipoclorito, qué es un equipo de la marca Mayer, por lo que la reacción de electrólisis se realiza dentro del aparato y separa estos compuestos en elementos más simples, trasformando el cloruro de sodio en hipoclorito de sodio y gas de hidrógeno. El hipoclorito de sodio se almacena en contenedores de 10,000 litros y a través de tuberías se lleva a los tanques desinfección como se observa en la figura 15.

Figura 15

Generación de hipoclorito

a) Equipo generador de hipoclorito

b)Contenedores de Hipoclorito de sodio

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

Descarga del Agua Tratada. La parte final del tratamiento de aguas residuales de la PTAR-Paso Limón se concluyen con los análisis fisicoquímicos y microbiológicos que se le dan a las aguas residuales; se descarga un agua que cumple con la NOM- 001-SEMARNAT-1996, a la cual se removió la mayor cantidad de contaminantes presentes en las aguas residuales. El agua tratada finalmente se descarga al río Sabinal como se muestra en la figura 16.

A la salida del proceso se tiene un aproximado de 750 litros por segundo de agua tratada del cual se utiliza un aproximado de 60 a 70 litro para recirculación y uso en la planta. Se cuenta con cuatro equipos de bombeo, parte del agua tratada se utilizan para el sistema de riego para áreas verdes y el área de servicios auxiliares, utilizándose como es el caso de las cribas finas, preparación de polímeros, secado de los lodos y en otras partes del proceso a fin de cumplir con el propósito de la planta.

Figura 16

Descarga del agua tratada

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

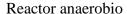
Tratamiento de Lodos.

Espesamiento para la Digestión Anaerobia. La planta cuenta con un edificio de espesado de los lodos provenientes de la Planta de tratamiento de aguas residuales Tuchtlán, los lodos primarios y secundarios como se muestra en la figura 17. Por lo que se le adiciona una solución de polímeros para que los lodos se aglomeren y eliminar la mayor cantidad de agua, y una vez que se espesa se envía al biodigestor o reactor anaerobio.

-

Figura 17

Espesamiento de los lodos


Fuente: Elaboración propia.

Reactor de Lodos Anaerobio. Es un reactor de alta tasa, que tiene una capacidad de 8000 metros cúbicos; entes reactor se da el tratamiento a los lodos de los sedimentadores primarios y secundarios, así como lodos provenientes de la planta Tuchtlán como se observa en la figura 18. En este reactor se degrada los lodos, el cual contiene un conjunto de microorganismos, bacterias metanogénicas, qué van a realizar el proceso. La metanogénesis, es un proceso químico desarrollado por microorganismos o bacterias a través de una hidrólisis, acidogénesis, acetogénesis y metanogénesis del cuál, el producto final de esa reacción, es la obtención de metano. Para ello contiene una cúpula, en la cual se va almacenando el gas metano, y que tiene una capacidad aproximada de 2000 metros cúbicos en volumen, en la parte alta o cúpula del reactor. Ese biogás generado como no se puede almacenar, se tiene que quemar través de un quemador de biogás, y lo que hace este quemador es eliminar el biogás acumulado. Los

b)

microorganismos transforman la materia orgánica en un 75% de metano y otro 35% de CO₂, agua, sulfuro de hidrógenos y otros compuestos. El tiempo de retención es de aproximadamente 16 días, el cual es el tiempo que dura la digestión anaerobia, durante ese lapso se va a degradar a la materia orgánica, la fracción volátil especial que está presente en los lodos. Los microorganismos harán este trabajo de remoción o degradación y trataran de disminuir ese volumen de lodos por lo que la fracción volátil se va a reducir a un 50%; estos microorganismos se mantienen en condiciones mesófílicas en un rango de 25 a 35 grados centígrados, temperatura óptima en la que trabaja mejor o las condiciones óptimas de operación.

Figura 18

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

El reactor se debe homogenizar a través de bombas, tiene una boquilla tipo jet, que promueve un flujo radial qué hace que el reactor este en constante agitación, para que los microorganismos estén degradando la materia orgánica, una vez de que se cumple el tiempo de digestión se pasa a la segunda etapa qué es la deshidratación de los lodos.

Deshidratación de Lodos. Posterior a la digestión anaerobia se procede a la deshidratación de los lodos; los lodos no pueden desecharse con un contenido alto de humedad, por lo que se tiene que hacer una deshidratación para ser dispuestos a relleno sanitario o mejoramiento de suelos o bioremediación de suelos. Por lo que a través de unos filtros prensas o banda se tratarán de eliminar todo excedente de agua que contienen los lodos; aunque ya están digeridos tienen una alta concentración de humedad. Por lo que se inyecta un polímero catiónico de alto peso molecular, qué hará reaccionar y formar flóculos, y eliminar el exceso de agua. En la banda superior del equipo se hace una torta compacta de lodo, en donde se elimina el agua, y a través de las bandas transportadoras se obtendrá un lodo ya deshidratado como se ve en la figura 19.

Figura 19

Filtro prensa

Fuente: Adaptado de video: PTAR: Paso Limón. SMAPA, 2018.

El lodo deshidratado corre por la banda transportadora hasta llevarlos finalmente al camión donde se recibe todo el lodo deshidratado. Se obtiene un aproximado de 4 a 5 camiones diarios que se lleva a disposición final o mejoramiento de suelos, estos lodos tiene un contenido de humedad del 23% y cumplen con la NOM-04-SEMARNAT-2002, con la cantidad que pide la norma con respecto a los organismos patógenos, además se hace un análisis periódico conforme lo exige esta norma.

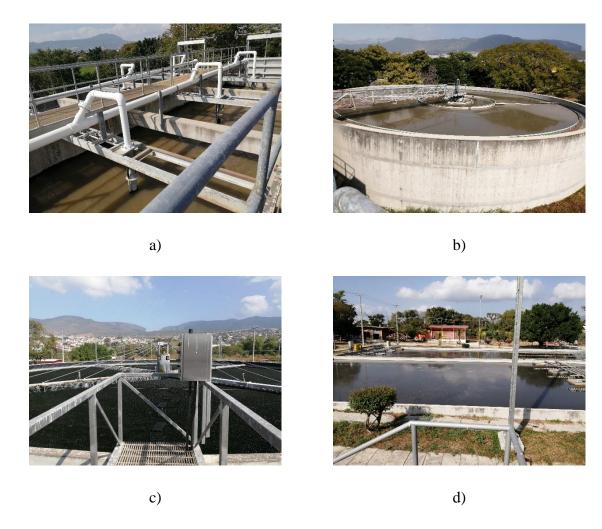
1.3.3 Condiciones de Operación de la PTAR-Paso Limón

Actualmente la PTAR-Paso Limón recibe el agua residual domiciliaria con un poco más de 800 l/s en total en el registro o caja, proveniente de 3 colectores: Uno proviene de la Patria Nueva, San Cayetano, Cerro de Guadalupe y Las Torres; un colector que capta las aguas en dos marginales, sobre las cachas del ISSSTE y de allí viene un emisor de 150 l/s: y el colector aeropuerto que viene por el boulevard Belisario Domínguez y entra por el lado sur. Después de la caja, el agua se divide en dos líneas y entra a 3 Cribas automáticas de 15 cm que opera por tiempo, atrapando los residuos sólidos, actualmente una de las cribas e encuentra en mantenimiento. El agua residual pasa al cárcamo, a través de 3 bombas verticales y 3 sumergibles, de 125 hp y 135 hp respectivamente, para ser enviado enseguida a los desarenadores; La planta opera de manera regular con una bomba de 125 hp y 135 hp, y durante la madrugada debido a que disminuye la aportación deja de operar una de las bombas; por lo que en un promedio de 18 horas existe un gasto aproximado de energía de 3,490 kWh entre estas dos bombas como se observa en la figura 20. Durante la noche se dejan de operar algunos equipos, se quita la ventilación en los filtros percoladores, los mezcladores, se pone en operación los filtros prensa y se purgan los clarificadores secundarios.

Figura 20
Llegada del agua residual a la planta de tratamiento

a) Caja de llegada del agua residual, b) Entrada a los desarenadores b) Cribas automáticas, d) Cárcamo de bombeo. Fuente: Elaboración propia.

El agua residual sube al desarenador, a través de dos trenes de tratamiento, y se monitorea con un medidor de flujo a la entrada y salida. En el desarenador se inyecta aire con una bomba de vacío cada 3 minutos y cada 5 minutos se suspende; y a través de dos cribas automáticas de placas perforadas de 6 mm de separación y una criba manual de 6 mm se extrae las arenas finas.

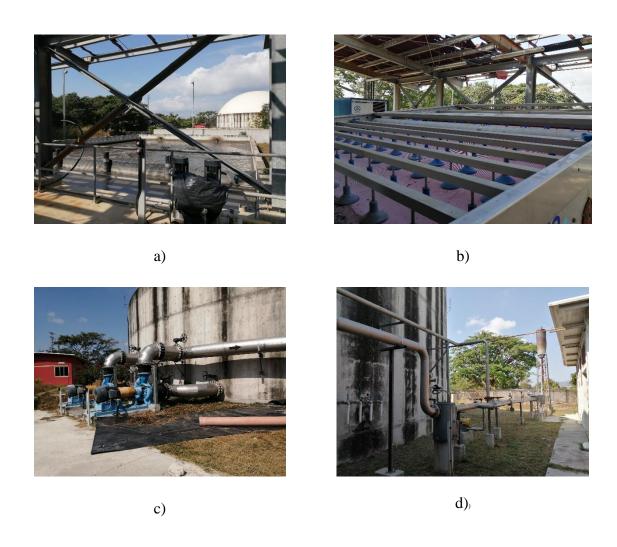

Para posteriormente bajar a los clarificadores primarios, que tienen una capacidad de 4950 m³ y de 3900 m³ respectivamente. En este se introduce además los lodos que provienen de los clarificadores secundarios y los lodos que provienen de la Planta Tuchtlán, debido a que el proceso de espesado no está llevando acabo.

El agua es enviada a los filtros percoladores, lo que este disuelto y no se quedó en los clarificadores primarios, las bacterias lo retienen en el filtro percolador; además de que el tiempo de retención es mayor, el equipo también contiene una ventilación forzada y recirculación para aumentar la eficiencia. En uno de los trenes de tratamiento el filtro percolador es elevado, por lo que necesita de una bomba de 75 hp para enviar el agua del clarificador primario. En el otro tren de tratamiento contiene dos filtros percoladores pequeños con un volumen de 200 m³ cada uno, y una bomba que permite la recirculación a los filtros.

El agua llega a los clarificadores secundarios, y durante el proceso se extrae los lodos con bombeo, para ello contiene 4 secciones de canaletas y 4 secciones de tubos. Cada línea tiene un canal lateral, del que se extrae los lodos, con una bomba de 5.5 hp para ser enviado al clarificador primario; en el caso del clarificador circular se realiza cada 6 horas durante 5 minutos. Y en el caso del clarificador rectangular se lleva más tiempo, aproximadamente durante 45 min a través de los dos canales laterales de manera alternada cada día como se ve en la Figura 21. El agua es enviada al área de cloración, para después ser incorporada al rio Sabinal con un caudal de salida de 650 l/s de agua tratada.

Figura 21

Proceso de tratamiento de las aguas residuales


a) Desarenador, b) Clarificador primario b) Filtro percolador, d) Clarificador secundario. Fuente: Elaboración propia.

El edificio de espesado se encuentra fuera de operación, una de las mesas quedó desmantelada y sin banda y la otra mesa de espesado está instalada para operar; sin embargo debido a problemas con el cableado de la bomba en el área de polímeros, no se puede realizar el espesado. Los lodos provenientes de Tuchtlán se reciben durante la noche, se colocan a la

salida de las cribas y se ingresan en los clarificadores primarios y, después de una recirculación en el clarificador primario, los lodos se pueden dirigir al digestor anaerobio, usualmente se envía por las noches, a fin de tener un ahorro del consumo energético. El área de espesado en una operación normal, contiene dos sopladores para airear los lodos y extraer las arenas que contenga, con una bomba de 100 hp de capacidad. Además de bombear los lodos mixto a la mesa espesadora, también se bombea los lodos que se concentre en el tanque de espesado al biodigestor.

El biodigestor opera en función de la alimentación para la producción de biogás; sin embargo otro de los factores para la producción de biogás, dependerá de la disponibilidad de camión o trasporte para los biosolidos, ya que se necesitaría de 4 a 5 camiones en el día; la planta cuenta con poca disponibilidad de vehículos para trasladar los biosolidos que salen del biodigestor. El biodigestor tiene una bomba de mezclado, una línea de entrada del lodo primario y un decantado para extraer el exceso de agua; tiene una tubería para calentar los lodos en una caldera e introducirlo en la línea en caso de ser necesario y además de una mirilla visual para ver los niveles. Contiene 3 bombas, para enviar los biosolidos al filtro prensa y 5 líneas de salida del biodigestor para meter los lodos digeridos; además contiene un tanque de lodos aireados, si se extrae y no esta digerido el lodo se puede regresar al tanque y se termina de digerir al airearse, actualmente este tanque se encuentra fuera de operación. El tiempo de retención es de 16 a 20 días en el biodigestor y contiene líneas para inspección y muestro de los lodos como se ve en la figura 22; usualmente a partir de las 12 de la noche se extraer los biosolidos a los camiones.

Figura 22
Proceso de los lodos al biodigestor

a) Tanque de espesado, b) Mesa de espesado b) Recirculación de los lodos en el biodigestor, d)
 Conducción del biogás al quemador. Fuente: Elaboración propia.

Actualmente el biogás obtenido se quema, un volumen de 150 m³ aproximado al día; sin embargo en años anteriores se lograba conforme a la información proporcionada se logró quemar alrededor de 6000 m³ en el día, como se observa en la figura 22 d).

Se cuenta con 3 bombas para enviar los biosolidos a la deshidratación sobre 3 filtros prensas; Durante este proceso se agrega polímeros a fin de que los lodos logren soltar la humedad. Al llegar a las bandas del filtro prensa se asegura que el lodo no se pegue a esta mediante la inyección de agua con el apoyo de dos bombas, para realizar el lavado inferior y superior de las bandas. El lodo deshidratado se lleva al camión con un 23 % de humedad y disponerlo en sitios disponibles para el mejoramiento de suelos.

Capítulo 2. Revisión de la Literatura

2.1 Biodigestión Anaerobia y Sistemas de Generación

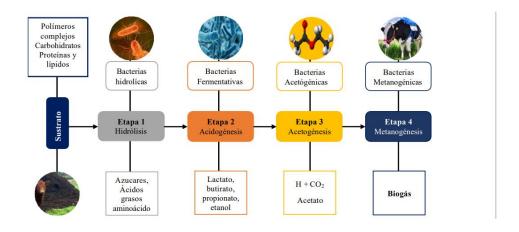
2.1.1 Generación anaerobia

La digestión anaerobia (DA) es un proceso biológico que en ausencia de oxígeno descompone materia orgánica biodegradable y cuyo producto principal es el biogás (Reyes-Ortega, y otros, 2016). Este proceso involucra distintos tipos y especies de microorganismos para cada uno de los pasos de la degradación. En este proceso se distinguen cuatro etapas principales, las cuales fueron propuestas por Kaspar y Whurmman (1978):1) hidrólisis, donde los polímeros de alto peso molecular son degradados a monómeros solubles, 2)acidogénesis en donde los monómeros solubles son fermentados en ácidos orgánicos como son el acético, propiónico, y butírico principalmente;3) acetogénesis, en donde los productos generados en la etapa anterior son convertidos en ácido acético, hidrógeno y dióxido de carbono y 4)metanogénesis, etapa final encargada de la producción de metano a partir del ácido acético o de mezclas de hidrógeno y dióxido de carbono, como se muestra en la figura 23. (Montalvo & Guerrero, 2003) (Batstone, y otros, 2002).

Etapa Hidrolítica: En esta etapa los compuestos orgánicos complejos, como lípidos, proteínas e hidratos de carbono, son despolimerizados, por acción de enzimas hidrolíticas, en moléculas solubles y fácilmente degradables, como azúcares, ácidos grasos de cadena larga, aminoácidos, alcoholes. Se trata de un proceso enzimático extracelular, y las bacterias responsables de su generación son las bacterias hidrolítico-acidogénicas.

Etapa Acidogénica: Los compuestos solubles (aminoácidos, azucares, ácidos grasos, entre otros) obtenidos de la etapa anterior se transforman en ácidos grasos de cadena corta (ácidos grasos volátiles), esto es, ácidos acético, propiónico, butírico y valérico, principalmente. Bacterias acidogénicas comúnmente encontradas en digestores incluyen especies de Butyrivibrio. Propionibacterium, Clostridium, Bacteroides. Ruminococos, Bifidobacterium, Lactobacillus, Streptococos y Enterobacterias. La cinética en este proceso es relativamente rápida (Nogués, Rezeau, & García-Galindo, 2010).

Etapa Acetogénica: Los compuestos intermedios son transformados por las bacterias acetogénicas. Como principales productos se obtiene ácido acético, hidrógeno y dióxido de carbono. El metabolismo acetogénico es muy dependiente de las concentraciones de estos productos. Como ejemplos de bacterias acetogénicas, cabe mencionar Syntrophobacter wolinii, que descompone el ácido propiónico o Syntrophomonas wolfei, que descompone el butírico. Los ácidos valérico y butírico son descompuestos por las mismas especies. En el grupo de bacterias acetogénicas se incluyen las homoacetogénicas, capaces de producir ácido acético a partir de hidrógeno y dióxido de carbono, perteneciente a los géneros Acetobacterium, Acetoanaerobium, Acetogenium, Clostridium o Eubacterium.


Etapa Metanogénica: Esta es la etapa final del proceso, en el que compuestos como el ácido acético, hidrógeno y dióxido de carbono son transformados a CH₄ y CO₂. Se distinguen dos tipos principales de microorganismos, los que degradan el ácido acético (bacterias metanogénicas acetoclásticas) y los que consumen hidrógeno (metanogénicas hidrogenófilas). La principal vía de formación del metano es la primera, con alrededor del 70% del metano producido, de forma general. A pesar de ser esta la vía más importante, solo microorganismos

de los géneros *Methanosarcina* y *Methanothrix* son capaces de producir metano a partir de acético y la cinética en esta etapa es lenta (Nogués, Rezeau, & García-Galindo, 2010)

Los microorganismos metanogénicos también pertenecen a otros géneros, como son, Methanococos, Methanobacterium, Methanobrevibacter o Methanogenium (Castells, 2012).

Fases de la digestión anaerobia y los microorganismos que intervienen

Figura 23

Nota: Recuperado de "Guía teórico-práctica sobre el biogás y los biodigestores, de FAO, 2019, Buenos Aires, Argentina: Colección documentos técnicos No. 12.

http://www.fao.org/publications/card/es/c/CA5082ES/.Dominio publico

Reyes (2018) concluye que el biogás es un recurso energético que constituye una opción hacia la transición energética, ya que puede ser empleado como combustible para generar electricidad, calor y/o energía mecánica a partir de una fuente renovable como lo son los cultivos energéticos, o bien a través de residuos agropecuarios, agroindustriales y municipales, entre otros. Por otra parte, desempeña un papel importante en la mitigación de gases de efecto invernadero.

2.1.2 Biodigestores

Un biodigestor es un contenedor cerrado, hermético e impermeable (llamado reactor), dentro del cual se deposita el material orgánico a fermentar (excrementos de animales, humanos, desechos vegetales entre otros) en determinada dilución de agua, donde se lleva a cabo la descomposición produciendo gas metano y fertilizantes orgánicos ricos en nitrógeno, fósforo y potasio (Perez Mendel, 2010). Se denota que no existe una clasificación estándar, ya que en algunos casos dependerá del tamaño, características o nivel tecnológico (FAO, 2019). Por lo que respecta a sus características y tecnología se clasifican como se denota en la tabla 1:

Tabla 1

Clasificación de los digestores de acuerdo a sus características y tecnología

Tipos de biodigestores						
	Carga	Completa en una única vez (batch)Semicontinua o continúa.				
Características:	Contenido de materia seca de la mezcla	 Digestores húmedos Digestores semihúmedos Digestores secos. 				
	Grado de mezclado	Mezcla completaMezcla parcialNula				
	Manejo del sustrato	Digestores que lo hacenDigestores que no lo hacen				
	Etapas del manejo	Una etapaDos etapas				

Nivel de	Bajo, medio o alto	Temperatura del proceso, grado de				
tecnología		mezclado, automatización y				
		sistemas de medición de la				
		operación.				

Fuente: elaboración propia con información adaptada de la FAO (2019) de la "Guía teórico-práctica sobre el biogás y los biodigestores". Buenos Aires. Argentina.

http://www.fao.org/publications/card/es/c/CA5082ES/

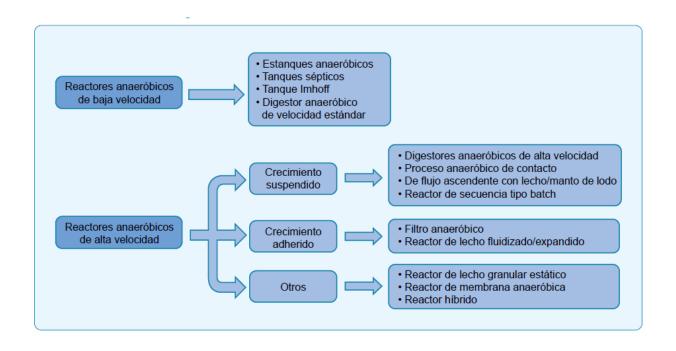
Los biodigestores son de diferentes tipos, desde caseros hasta plantas con tecnología de punta automatizadas. La elección del mismo dependerá del objetivo, recurso, dinero, financiamiento y la clase de sustrato que alimentará al biodigestor (FAO, 2019). Algunos de los biodigestores más usuales se resumen en la tabla 2.

Tabla 2
Biodigestores más comunes

Clasificación	Tipo		
Biodigestores discontinuos	Biodigestores en batch		
Biodigestores semicontinuos o continuos	Biodigestores rurales de baja tecnología:		
húmedos sin manejo del sustrato			
and the second s	*Biodigestores tubulares, o taiwaneses, o		
	flexibles		
	*Biodigestores chinos o rígidos		

	Biodigestores de laguna cubierta de media-baja
	tecnología
	Biodigestores de mezcla completa de media-alta
	tecnología
	Biodigestores de mezcla completa de alta
	tecnología
Biodigestores semicontinuos o continuos	Biodigestores para efluentes líquidos con altas
húmedos con manejo del sustrato	cargas orgánicas
Biodigestores semicontinuos o continuos	
húmedos en dos etapas	
Biodigestores semicontinuos o continuos	
semihúmedos sin manejo del sustrato	
Biodigestores semicontinuos o continuos	
secos sin manejo del sustrato	

Fuente: elaboración propia con información adaptada de la FAO (2019) de la "Guía teórico-práctica sobre el biogás y los biodigestores". Buenos Aires. Argentina.


http://www.fao.org/publications/card/es/c/CA5082ES/

Así también los digestores o reactores anaeróbicos se pueden clasificarse como de baja velocidad o de alta velocidad, como se ve en la figura 24. Los reactores anaeróbicos de baja velocidad tienen una tasa de carga orgánica baja, en el rango de 1-2 kg DQO/m3.día.y las

condiciones de temperatura, tiempo de retención del sustrato entre otras no se controlan. Este tipo de digestor no es adecuado para la producir bioenergía, por lo que para ayudar en la producción de biogás y su recuperación en algunas lagunas anaeróbicas y tanques se cubren y mezclan. Los sistemas anaeróbicos de alta velocidad conservan un alto nivel de biomasa en el biodigestor, con tasas de carga orgánica que van de 5 a 30 kg DQO/ m³.día o superiores. Las condiciones ambientales se conservan a fin de optimizar el funcionamiento del biodigestor. Los reactores anaeróbicos de alta velocidad son más adecuados para producir bioenergía. (GEF, 2011)

Figura 24

Clasificación de los biodigestores anaerobios

Nota: Recuperado de "Manual de biogás" de GEF, MINENERGIA / PNUD / FAO, Santiago, Chile, 2011. (http://www.fao.org/3/as400s/as400s.pdf). Dominio público.

Digestores Anaeróbicos de Alta Velocidad. Estos digestores operan bajo condiciones termófilicas o mesófílicas y básicamente es un reactor continuo con agitación. Desarrollar fermentadores para la metanogénesis es más problemático en comparación con otros fermentadores de diferentes procesos. En el funcionamiento de reactores anaeróbicos se deben considerar algunos parámetros como son: la tasa de carga de sólidos (SV), tiempo de retención de sólidos (TRS) y la reducción de solidos volátiles (RSV). El tiempo de retención varia de 15 a 30 días para la digestión mesófílicas y de 5 a 15 días para la digestión termófilicas.

Proceso Anaeróbico de Contacto. El diseño se compone de un reactor anaeróbico de tipo convencional con agitación, donde se pone en contacto el efluente que alimenta el reactor con la biomasa anaeróbica que existe dentro del mismo. Con un tiempo de retención hidráulica de 12 a 24 horas, los compuestos orgánicos coloidales y solubles son los que primeramente se degraden. Durante el proceso los microorganismos se adhieren a las partículas formando sólidos sedimentables. Si se logra una buena sedimentación en el decantador, el sistema habrá sido eficiente, es por ello que antes de la entrada del líquido al decantador debe colocarse un desgasificador. El desgasificador remueve las burbujas de biogás (CH₄ y CO₂) adheridas al lodo, permitiendo su mejor sedimentación. A través de un decantador se retira la fracción de sólidos sedimentables, ubicado después del reactor anaeróbico (decantador secundario). El lodo que se obtiene es concentrado y recirculado al reactor. Se puede derivarse hacia una etapa final de tratamiento aeróbico el líquido claro que sale en la parte superior del decantador, a fin de realizar una adicional depuración, reincorporar oxígeno disuelto en el líquido tratado, previo a su vertido a un cuerpo receptor. Llevándose a cabo un TRS en un promedio de 25 a 40 días y siendo este proceso ventajoso para corrientes con sólidos suspendidos de alta carga.

Reactor Anaeróbico en Secuencia Tipo Batch. Este tipo de reactor es un tanque que opera por ciclos, en 4 etapas: alimentación, reacción, sedimentación y descarga. Se usan para investigación en laboratorios, y saber si un material es apto para producir biogás, el tiempo de producción y la cantidad, lo que permite establecer los potenciales de producción de biogás de los diferentes sustratos. Estos biodigestores pueden ser de mezclas completas o parciales, húmedas, semihúmedas o secas, y con o sin manejo del sustrato. En estos regularmente se realiza una carga y vaciado total en cada proceso, y se emplea inóculo, con una proporción entre 20 y 50% de la mezcla a digerir. Llegan a ser de diferentes tamaños y materiales, usualmente pequeños, lo que permite operarlos y manipular de manera más fácil diferentes variables, como la temperatura y la agitación, sin grandes costos, permitiendo simular distintos escenarios. Sus principales ventajas son la flexibilidad que aporta al proceso, además de la simulación del ambiente natural de los microorganismos y sus menores costos de operación, una mejor calidad del efluente y un mejor control del proceso, sin recirculación de líquidos o sólidos, a menos que se emplee como agitación. Sin embargo, posee tiempos muertos en donde no hay producción de gas, los que no son compatibles con aplicaciones energéticas a nivel industrial (Perez Mendel, 2010) (FAO, 2019) (GEF, 2011)

Filtro Anaeróbico. De acuerdo a la forma de alimentación, puede clasificarse como filtro anaeróbico ascendente (FAA), filtro anaeróbico descendente (FAD), o filtro anaeróbico de alimentación múltiple (FAM). En general, no se recomienda la recirculación para una máxima recuperación de energía.

Filtro Anaeróbico de Flujo Ascendente. Es un tipo de reactor anaeróbico tubular continuo, la alimentación entra por la parte inferior del reactor, pasa todo el perfil longitudinal

a través de un lecho de piedras a plástico y sale por la parte superior permitiendo que los microorganismos se agrupen en forma de gránulos. Bajo condiciones prácticas del reactor los densos agregados no son susceptibles al lavado del sistema y poseen unas buenas condiciones de sedimentación. Un buen tratamiento aun a altas tasas de carga orgánica dependerá de la retención de lodo activo, en forma de gránulos o flóculos.

El líquido que atraviesa el manto contiene algunos gránulos biológicos y sólidos residuales que pasan por el sedimentador, separándose los sólidos del efluente. La turbulencia natural producida por la producción de biogás y el caudal del afluente permite el buen contacto entre el lodo y el agua residual en el sistema. Permitiendo mayores cargas orgánicas, menor volumen de reacción y de espacio, y se produce una gran cantidad de biogás. Además, la elevada concentración de biomasa, lo hace más tolerante a la presencia de tóxicos. Se puede lograr un mayor TRS libremente del TRH. Usualmente, la tasa de carga es de 5 a 15 kg DQO/m3 .día y el TRH de 0.5 a 4 días.

Filtro Anaeróbico de Flujo Descendente. La alimentación baña al relleno desde arriba hacia debajo de la columna del reactor, para su eliminación o bien para su recirculación. Debido a las fuerzas de fricción del líquido, se arrastra parte de la biomasa adherida, y el soporte bacteriano es acoplado al reactor formando canales verticales o tubos. Como parte de las ventajas permite utilizar la contracorriente entre la fase gaseosa y líquida, y remedia los problemas de obstrucción de los canales.

Estos reactores son aptos de tratar compuestos insolubles y solubles. El TRS es igual al TRH, y si el TRH es inferior a uno o dos días, mientras que las bacterias acidogénicas tienen

suficiente tiempo para crecer en el líquido del reactor, las metanobacterias no pueden crecer en suspensión.

Filtro Anaeróbico de Alimentación Múltiple. La alimentación al reactor a través del filtro entra por diversos puntos. Las ventajas de este tipo de sistemas es que la distribución homogénea de la biomasa a través del lecho, mantiene un régimen de mezcla completa a través de todo el reactor, la concentración del sustrato es igual en todo el reactor y si se compara con el 65% de alimenta simple este tiene una utilización efectiva de todo el lecho del filtro con un volumen de trabajo de 87%.

Reactor de Lecho Expandido y Fluidizado. Este reactor es una estructura cilíndrica empaquetada con un soporte inerte de tamaño pequeño en un 10% del volumen del reactor, permitiendo la acumulación de concentraciones superiores de biomasa y la formación de películas alrededor de las partículas. Los soportes son de carbón activado granular, arena u otros medios plásticos sintéticos, y se tiene una velocidad de flujo ascendente que permite la expansión del lecho en 15 – 30%; permitiendo se expanda el lecho a un punto en la que la fuerza gravitacional de descenso es igual a la de fricción por arrastre.

El reactor de lecho fluidizado similar al reactor de lecho expandido, aunque este es de película fija, ya que tiende a lavarse del sistema la biomasa suspendida debido a que la velocidad del flujo ascendente que es alto. La expansión del lecho es del 25 – 30% del volumen del lecho sedimentado, por lo que requerirá una velocidad de flujo ascendente mayor a 10 a 25 m/hr. Debido a que se sostienen por la velocidad de flujo de manera ascendente los soportes pueden moverse de manera libre en el lecho. Este tipo de reactor permite una mayor difusión del sustrato dentro de la biopelícula.

Biorreactor de Membrana Anaeróbica. Para que la separación sólido-líquido sea más fácil, este reactor tiene una membrana en el reactor o en un circuito externo. Por lo que es idóneo por operar a TRS considerablemente largos y retener biomasa, siendo independiente del TRH. En ideal en la actualidad para la obtención de energía renovable.

Reactor Hibrido. Es un sistema mixto que adopta en la parte inferior un reactor de lecho de fango (UASB) seguido en la parte superior de un filtro anaerobio, sustituyendo por material de relleno el sistema de separación gas-solido. Las ventajas de este tipo de reactor es que se evita la obstrucción, en la parte del lecho de fango se elimina la mayor parte de la materia orgánica, más que de soporte el relleno actúa como desgasificador para el crecimiento de las baterías. Además se reduce la perdida de biomasa al tener relleno. Favoreciendo la granulación y permite que regrese al lecho una mayor cantidad de fango. Además, se puede operar con fango floculento para tratar las aguas residuales que no ayudan la granulación, siendo al UASB muy efectivo en la retención de solidos superior, y elimina materia orgánica que no se haría por si sola en la UASB. A escala real, existen pocos reactores híbridos, pero se presenta como una tecnología competente para aguas residuales que no ayudan a la granulación en estudios existentes. (Soroa del Campo, Lopetegui Garnika, Almandoz Peraita, & García de las Heras, 2005).

2.2 Uso del Biogás (Gas Metano)

2.2.1 Biogás

Composición Química. La composición del biogás dependerá del sustrato con que se alimenta el biodigestor, la temperatura de procesos y de la tecnología utilizada, "siendo el biogás

más rico en metano el más valorado debido a un poder calorífico de aproximadamente 10 kWh/m³ de CH4" (de Compostaje, 2014). Los componentes principales del gas bruto son:

- Metano (CH4): es un gas que se puede emplear como combustible y se encuentra con una concentración de entre 35% y 75%.
 - Dióxido de carbono (CO2): Su concentración varía en el rango de 15% a 60%.
- Sulfuro de hidrógeno (H2S): Su generación varía dependiendo de la composición del sustrato utilizado con que se alimenta el biodigestor, en un promedio de 0.005 al 2%. Sino es eliminado del biogás es muy corrosivo provocando una disminución en la vida útil de los equipos además de que para los humanos y animales el H₂S es toxico. En una muestra cruda de biogás, el valor de H2S puede variar en un rango entre 5000 y 50000 partes por millón (ppm).
- \bullet Los hidrocarburos saturados y halogenados (VOC (Compuestos orgánicos volátiles), $<\!0.6~\%)$
 - Monóxido de carbono CO < 0.6 %.
 - Los xiloxanos que se logra encontrar de 0 a 0.02%.
- Hidrógeno (H2): Habitualmente, la concentración de este componente es inferior a las
 5 000 ppm.
 - El Amoniaco NH3 se logra encontrar en una cantidad < 1%
- Nitrógeno gaseoso (N2): Su presencia en sistemas con biodigestores, no supera la concentración del 2% normalmente.

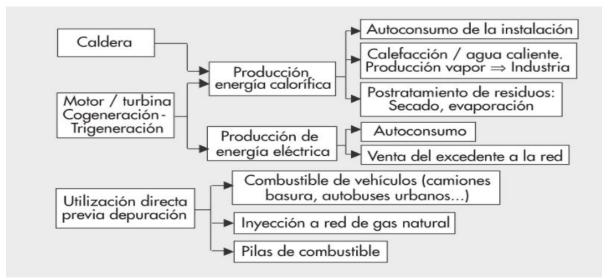
- Oxígeno (O2): Puede alcanzar un máximo valor en el biogás de 1% molar.
- Agua (H2O): Es común encontrar vapores de agua, en especialmente cuando se trabaja con procesos termofílicos entre un 5 a 10 %. (Casanovas, Della, Reymundo , & Serafin, 2019) (Arrellano, y otros, 2017)

De acuerdo a lo que Castells (2012) menciona, la composición o riqueza del biogás depende del material digerido y del funcionamiento del proceso. Así también, que la potencia calorífica inferior del biogás es aproximadamente de 5.250 kcal/m³, para una riqueza en metano de 60%. En la Tabla 3 se muestra un resumen de la composición y características del biogás.

Tabla 3

Composición y características del biogás

Características	CH ₄	CO ₂	H_{2}	H ₂ S	Propiedades biogás*
Fracción (% v/v)	55-70	27-44	1	3	100
Valor calorífico (MJ/m³)	35,8		10,8	22,8	21,5
Rango de ignición (% volumen en aire)	5-15	-	4-80	4-45	6-12
Temperatura de ignición (°C)	650-750		585		650-750
Presión crítica (MPa)	4,7	7,5	1,2	8,9	7,5-8,9
Densidad en condiciones normales (g/l)	162	468	61	349	320
Densidad / densidad aire	0,55	2,5	0,07	1,2	0,83

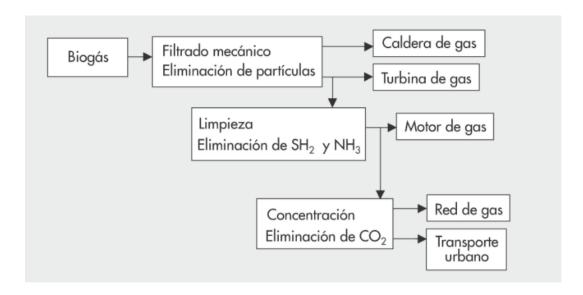

^{*} Para un biogás de composición: 60% de CH, y 40% de CO,

Nota: Recuperado de *"Residuos urbanos I.4"* de Compostaje, 2014, del original de (Baader, Dohne, & Brenndorfer, 1978) pág. 239 de https://elibro.net/es/ereader/uvm/55265

2.2.2 Uso del Biogás

El biogás que se genera en el proceso de digestión anaerobia se valoriza de formas diferentes, dependiendo del uso que se le dará, ya sea para uso en una caldera, motor o turbina cogeneración-trigeneración, o de utilización directa como como se muestra en la figura 25.

Figura 25
Usos del biogás



Nota. Recuperado de "Tratamiento y valorización energética de residuos", de Castells, X., 2012, p.654,Madrid, España: Ediciones Díaz de Santos S.A. https://elibro.net/es/ereader/uvm/62549

Así también los requerimientos de depuración del gas dependerá en función del uso, tal y como se muestra en la figura 26.

Figura 26

Tratamiento del biogás en función del uso

Nota. Recuperado de "Tratamiento y valorización energética de residuos", de Castells, X., 2012, p.654, Madrid, España: Ediciones Díaz de Santos S.A. https://elibro.net/es/ereader/uvm/62549.

La Unesco (2020) en el *Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos* hace mención sobre la importancia de la producción del biogás en las plantas de tratamiento de aguas residuales, y que su producción y recuperación pueda utilizarse para alimentar a la misma planta; mejorando el ahorro de energía, con un balance energético de cero, ayudando a reducir las emisiones de efecto invernadero, además de aprovechar otras materias primas en el proceso como fertilizante y obtener nuevas fuentes de ingresos.

2.2.3 Tratamiento del Biogás en Función del Uso

La tecnología de purificación que se utilizará para el biogás dependerá del uso energético que se le desea dar; dentro de esta tecnología se encuentran el proceso de limpieza

proceso biológico o físico-químico industrial, eliminándose los compuestos dañinos a través de estos procesos como se indica en la tabla 4. Si se necesita enriquecer el biogás y con la finalidad de cumplir con las especificaciones del índice de Wobbe, se retira el CO₂ para ajustar y la densidad relativa y el valor calorífico. Cuando la transformación del biogás cumple los estándares fijados, se le conoce como biometano, con 95 - 97% de CH₄ y 1 - 3 % de CO₂

Tabla 4

La separación de compuestos de acuerdo al uso del gas

Utilización del biogás	Agua	H ₂ S	Polvo	Siloxanos	CO ₂	O ₂
Calentador directo (calderas de gas / quemadores)	+	+1 < 1.000 ppm	+	-	-	
Cocina	+	-	-	-	-	
Electricidad (motor estacionario a gas)	+	+1 < 1.000 ppm	+	+ ²	-/+ ³	
Combustible para vehículos (ECI)	+4	+	+	+ ²	+	
Actualización para gas natural	+	+	+	+	+	+
Inyección en la red de gas natural	+ ⁵	+ ⁶	+ ⁷	+	+ ⁸	+9

¹ Es necesaria la eliminación si se exceden los límites de entrada.

Nota: Recuperado de *Purificación y usos del biogás* de Arrellano, y otros, 2017. Pag.40. de https://elibro.net/es/ereader/uvm/50402.

 $^{^2}$ Estándares para siloxano en Estados Unidos: microturbinas < 5 ppbv (~ 0,03 mg/m³); turbinas grandes < 87 ppbv (~ 0,1 mg/m³); motores ICE 5 - 28 mg/m³ según la norma del fabricante; células de combustible < 100 ppbv.

³ Es dependiente del contenido de CO₂ en el biogás y la especificación de los fabricantes.

⁴ Punto de rocío (*water dew point*, WDP) de, al menos, 10°C (EUA) y-5°C (Suecia) a presión atmosférica por debajo de la temperatura de invierno

⁵ Límite máximo de agua en tuberías (pipelines) 100 mg/m³.

⁶ Estándares: Alemania, S < 30 mg/Nm³; Francia, sulfuros < 100 mg/Nm³; Suecia, sulfuros < 23 mg/Nm³; Suiza, H2S < 5 mg/Nm³.

⁷ Estándares: Alemania, libre de polvo; Francia, polvo < 5 mg/Nm³; Suiza, libre de polvo.

⁸ Estándares: Alemania, CO₂ < 6 % vol.; Francia, CO₂ < 2% vol.; Suecia, CO₂ < 5 % vol.; Suiza, CO₂ < 6% vol.

⁹ Estándares: G260/G262 Alemania, O₂ < 3 % vol.; Francia, O₂ < 2 % vol.: Suecia, O₂ < 5 % vol.; Suiza, O₂, < 0,5 % vol.

Los gases que se obtienen en el tratamiento de depuración se clasifican de acuerdo a su valor calórico, de BTU medio (500 - 600 Btu/SCF) o BTU alto (600 - 1.000 Btu/SCF) (52). Los gases de BTU mediano se usa para procesos de calefacción y el funcionamiento de la conducción de los motores de combustión interna (ICE) y los gases de BTU alto llegan a tener la calidad para introducirse en la red gas. Como se detalla en la tabla 4 los compuestos del biogás que deben ser eliminados y los estándares de cumplimiento de acuerdo a la aplicación final que s ele dará al gas.

Algunas de las tecnologías que destacan para purificar el biogás y enriquecerlo con biometano se encuentran el lavado con agua, la adsorción por oscilación de presión y las tecnologías de membrana. El tratamiento del biogás depende de la composición y del uso que se le dará, dentro de las cuales, destacan las siguientes:

Eliminación de Partículas. Para este caso se utilizan rejillas metálicas, trampas de agua o combinaciones de ambas.

Eliminación de Agua. Por lo general el biogás se encuentra saturado de vapor de agua por lo que se elimina mediante la condensación en trampas frías, en la cual se aprovecha la diferencia la temperatura ambiente exterior y la del digestor y para condensar el agua de forma natural por debajo del punto de rocío. Si la digestión se realiza a 35 °C, el biogás contiene aproximadamente 35 g de agua por m³. Al incrementar la superficie de contacto aumenta la eficiencia. En la eliminación de agua los métodos que son utilizados se basan en el secado químico y la separación física del agua condensada. Si se desea reforzar la condensación se pueden utilizar instalaciones frigoríficas o absorbentes químicos como soluciones de etileno,

glicol o trietileno. Algunos equipos que se pueden afectar con el contacto del agua son: lechos de carbón activado, tuberías, los compresores, y otras partes del proceso.

Método Físico de Secado. En este método se enfría el biogás al punto de rocío para separar el condensado. Como es el caso de la refrigeración, el cual es un método de condensación utilizado para producir biogás para usos industrial, en especial para generar electricidad con equipos CHP (el uso de sistemas combinados de calefacción y suministro eléctrico). Para alcanzar puntos de rocío más bajos se debe comprimir el gas antes de enfriarse y después se expande a la presión que se desee. Las gotas de agua condensadas son atrapadas y eliminadas. Algunos otros métodos utilizados se encuentran: Los separadores de gotas (demisters) o desnebulizadores, separadores de ciclón, las trampas de humedad y los purgadores de agua.

Métodos de Secado Químico Absorción o Adsorción). Estos métodos se aplican a presiones altas, dentro de los cuales se encuentra el secado por adsorción de vapor de agua sobre algunos componentes químicos, alúmina y gel de sílice, que puedan unirse a las moléculas de agua; Así también se encuentra la absorción de agua en trietilenglicol y la absorción de agua con hidroscópicas.

Eliminación de H₂S. El ácido sulfhídrico es altamente corrosivo y además toxico, por lo que se debe reducir por debajo de los niveles aceptables, a fin de proteger las instalaciones de gas, motores, calderas y turbinas. Durante el proceso de la digestión anaerobia, las bacterias sulfatoreductoras se desarrollan y producen H₂S, en cantidades que pueden llegar al 1% en volumen. Debido al daño que puede causar a las tuberías y motores debe de eliminarse en los

primeros pasos de la purificación del gas. El H₂S del biogás se puede eliminar mediante una oxidación a azufre elemental sólido. Se pueden utilizar una gran variedad de absorbentes en un medio líquido u oxidante en fase sólida. Si se planea eliminar CO₂, los métodos que usan absorbentes líquidos son preferibles, sino los métodos de eliminación en seco son en mejores y más económicos, sobretodo en pequeñas instalaciones. Actualmente se continúa desarrollando tecnologías más rentables, sin embargo la elección del sistema de desulfuración dependerá de las condiciones de operación del proceso y factores económicos. Algunos de los métodos principales para la purificación del biogás son:

Minimización in Situ de la Producción de H₂S. En este método se adiciona aire u oxígeno puro para el sulfuro se oxide a azufre elemental o reacciona con el ion metálico para obtener sulfuro metálico insoluble. Se puede reducirse con valores inferiores de 50 ppm_v hasta en un 95% la concentración de sulfuro de hidrogeno, dependiendo la cantidad del aire agregado, del tiempo de reacción, la temperatura y el lugar. Dependiendo del contenido de metano se debe evitar sobredosis de aire, en caso de fallos de bomba ya que puede formarse una mezcla explosiva.

Tratamientos Fisicoquímicos. En este caso la tecnología dependerá del caudal y la concentración y de H₂S que se tiene que eliminar. Para cantidades grandes de H₂S se utiliza el proceso Claus. Este proceso se usa después de una concentración de absorción con aminas y consiste en una combustión donde se emplean varios reactores catalíticos en cascada. Usualmente se usa soluciones de amina como la metildietanolamina (MDEA), la dietanolamina (DEA) y la monoetanolamina (MEA). Para cantidades moderadas a bajas de H₂S se utilizan procesos como la absorción, la adsorción y al separación con membranas.

Se le conoce como absorción si se diluye directamente en un disolvente líquido una corriente de gas, y si reacciona químicamente el compuesto trasferido con algún compuesto de la fase liquida se le conoce como absorción química. Los procesos LO-CAT (Mericem) y SulFerox son los más utilizados en el proceso comercial para la desulfuración. Así también en los procesos de absorción química los reactores más usados son las columnas de relleno, columnas de pulverización, las columnas de platos y su combinación.

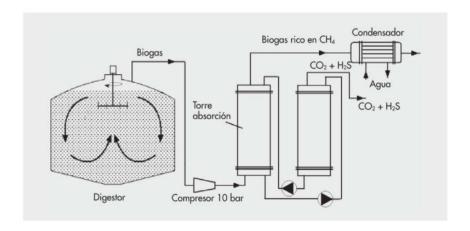
La difusión en soluciones acuosas de sulfato del gas que contiene H₂S permite la conversión del H₂S en sulfatos metálicos de baja solubilidad. Esta tecnología es cara y compleja por lo que para pequeñas escalas no es recomendable.

En el caso de la adsorción, por medio de un fenómeno de superficie el adsorbente solido realiza la adsorción selectiva de los contaminantes. Los adsorbentes comunes son los carbones activados, el gel de sílice, la alúmina activada y las zeolitas. Las esponjas de hierro son usadas con frecuencia para la desulfuración del biogás.

Eliminación del H₂S Después de la Digestión.

Adsorción sobre Carbón Activado. Para este método se usa carbón activado y se dosifica ácido sulfúrico (H₂SO₄) o ioduro de potasio (KI) para aumentar la velocidad de reacción y antes de que entre el H2S al lecho de carbón se añade al biogás de 4 a 6 % de aire para que el oxígeno ayude en la reacción. Así también la reacción es más eficaz a una presión de 700 a 800 kPa y a temperaturas de 50 a 70 ° C. Se necesita un proceso continuo de dos recipientes, uno de adsorción y otro de regeneración.

Adsorción Usando Óxido de Hierro e Hidróxido de Hierro. Se realiza sobre un material solido fijo, y por adherencia se adsorbe el H2S. El sulfhídrico reacciona con el hidróxido de hierro, el óxido de zinc y el óxido férrico para formar sulfuro de zinc o sulfuro férrico, de manera endotérmica, con temperatura mínima de 12 °C y de manera optimas entre 15 y 50 °C, y en presencia de humedad, aunque tampoco saturado ya reducirían la superficie activa. La cantidad de sulfhídrico que podría eliminarse tiene relación con la cantidad de hierro presente. En el proceso de regeneración es un proceso exotérmico, por lo que debe estar controlado, y se agrega oxígeno convirtiendo el sulfuro de hierro en óxido férrico y azufre elemental. Dependiendo de la cantidad de azufre eliminada los filtros de hierro se pueden regenerar de 3 a 5 veces. Usualmente se trabaja con dos lechos, mientras uno opera el otro se regenera. Se puede emplear virutas de madera cubiertas de óxido de hierro o pellets impregnados de óxido férrico. La densidad de las virutas es más baja que los pellets.


Adsorción con Líquidos. La adsorción puede ser física si se trata de disolver el componente traza en disolvente, o química si seguido de una reacción química se disuelve el componente del disolvente y el componente traza. El sulfhídrico, en gran variedad de soluciones acuosas, puede absorberse de forma selectiva. La absorción física se lleva a cabo en agua o disolvente orgánico. El más usual es el lavado con agua (wáter scrubbing). La absorción se realiza en un scrubber, equipado con un relleno que aumenta la superficie de contacto. Se encuentran diferentes tecnologías y soluciones absorbentes para el sulfhídrico.

Además se pueden regenerar las soluciones y el azufre se recupera si la instalación es suficientemente grande. El proceso de absorción se realiza a bajas temperaturas y altas presiones. Para regenerar la solución usualmente se calienta la solución, y del gas liberado se

recupera el azufre a través del proceso Claus. Se puede adicionar al agua productos químicos para mejorar el proceso de absorción como son: la solución diluida de NAOH, solución de FeCl, solución de Fe(OH) y soluciones de aminas. Los métodos en fase líquida son muy caros por lo que solo es recomendable en instalaciones de gran tamaño (Castells, 2012), como se muestra en la figura 27.

Sistema de tratamiento de gas mediante absorción en solución acuosa

Figura 27

Nota. Recuperado de "Tratamiento y valorización energética de residuos", de Castells, X., 2012, p.657, Madrid, España: Ediciones Díaz de Santos S.A. https://elibro.net/es/ereader/uvm/62549

Separación por Membranas. A través de una membrana semipermeable el H₂S (y el CO₂) traspasan, mientras que el CH₄ no permea. Las moléculas del flujo de gas pasan por una membrana y absorbidas a contracorriente del otro lado por el líquido. El NaOH es utilizado como liquido absorbente.

Eliminación del H2S a través de Procesos Biológicos. Este método es una alternativa al tratamiento químico deseable por sus bajos costos, superando todas las desventajas de los procesos químicos. En este método los microorganismos oxidan el sulfhídrico o los sulfuros a azufre elemental. La mayoría de los microorganismos que se utilizan son del género Thiobacillus. Además debe tener la cantidad estequiométrica de oxígeno para oxidar todo el H₂S presente, que dependiendo de la concentración debe ser entre un 2 y 6% de aire en el biogás. Uno de los métodos es agregar aire/oxígeno al espacio de cabeza del digestor o en el desgasificador. Dependiendo de la temperatura y las condiciones de operación se puede tener concentraciones menores de 50 ppm de H₂S, eliminándose más del 95%.

Filtros Percoladores. Los filtros percoladores son los que comúnmente son usados para la desulfuración de gases con cargas altas de H₂S, mayor proyección a escala industrial e interés energético. Este es equivalente a un lavador químico de gases, que tratara a través de un reactor relleno de un soporte usualmente inerte, y por medio de un dispositivo impulsor conduce el gas. Sobre el material de soporte crecen como una biopelícula una serie de microorganismos. El equipo tiene una fase liquida, que por su parte superior habitualmente se alimenta mediante la recirculación de la parte inferior, circulando a contracorriente a la fase gas. La fase acuosa es aportada y purgada por el sistema de manera continua, y para tener un mejor control del crecimiento de biomasa actúa como sistema de aporte de nutrientes. El funcionamiento del biofiltro depende altamente del material de relleno, usualmente formado por materiales inorgánicos inertes. Las ventajas de los reactores biológicos es que se puede controlar el proceso biológico, gran estabilidad y se trata mayores cargas de contaminantes.

Cultivos en Suspensión (Airlifts y Bioscrubbers). Otro de los métodos es el tratamiento en biofiltros o bioscrubber en el cual se combina una torre de lavado de gas y un tanque de aireación. El biogás entra al bioscrubber y es lavado con licor de fangos activos que proviene de un tanque de aireación. Los sulfuros que se quedan en el lodo, se recircula al tanque de aireación, con la ayuda de las bacterias sulfuro-oxidantes se oxida a sulfato. Las condiciones alcalinas mejoran la absorción del H₂S, formando especies más solubles como el sulfuro (S²⁻) y el hidrosulfuro (HS⁻). Las baterías alcalófilas sulfooxidantes son microorganismos capaces de crecer a pH> a 9 permitiendo oxidar el H₂S bajo condiciones extremas de alcalinidad y salinidad.

Adición de Cloruro de Hierro. Es un método en el que se agrega cloruro de hierro en estado líquido en el digestor o al sustrato antes de la alimentación. El hierro reacciona con los sulfuros y forman sulfuro de hierro que logran precipitar. Es recomendable en sistemas con muy alto contenido en sulfuros, eficiente pero no muy rentable. A pesar que las eliminaciones son altas, no se llega a niveles de depuración suficiente para usarse en vehículos.

Los Filtros Moleculares. Estos son compuestos de sílice activada o alúmina que tienen una gran afinidad por moléculas polares y elimina de manera selectiva las distintas sustancias. El área superficial se puede regenerar pasando un gas caliente (200 a 315 °C) en el lecho del reactor. Este método se puede usar para eliminar mercaptanos, agua y/o H₂S y otras sustancias a media o pequeña escala.

Eliminación de CO₂. Se puede emplear filtros moleculares o procesos de membranas, que puede separar de manera selectiva distintos compuestos. Se puede utilizar hidróxido de calcio o solución de yeso (sulfato cálcico hidratado). Como resultado se obtiene carbonato de

calcio y gas enriquecido con metano que se comprime para ser utilizado en vehículos. (Castells, 2012). La eliminación del CO₂ se necesita para lograr el índice de Wobbe, y a medida que disminuye el CO₂ también reduce la densidad relativa y aumenta el valor calorífico del biogás. Por lo que existen varias tecnologías, y algunas de estas utilizan técnicas como separación con membranas, adsorción por oscilación de presión, separación criogénica y absorción física y química del CO₂.

Absorción con Agua. El lavado con agua es una tecnología de absorción usado para separar de la corriente de gas el CO₂. Por lo que antes de entrar a la columna de absorción se puede eliminar el H₂S para la desulfuración del gas. Se puede alcanzar concentraciones de CH₄ de alrededor de 97% bajo condiciones de operación de presión entre 7 y 10 bar. Se recomienda eliminar mediante otro método el N₂ y O₂ en la corriente de gas a fin de que no disminuya el valor de calentamiento del biogás

Absorción Física (Disolventes Orgánicos). Este método es la combinación de la quimisorción y la fisisorción. Junto al CO₂, teóricamente se puede separar el NH₃ y el H2S; y en la práctica se necesita de desulfuración antes de que el biogás llegue a la columna de absorción a fin de evitar reacciones que no deseadas. A fin de regenerar la desorción se necesita temperaturas de 10 a 160 °C. Las concentraciones en la corriente de gas del CH₄ alcanzan los 99% sino contiene N₂ u O₂.

Adsorción por Oscilación de Presión. Este método emplea presión para separar algunos tipos de gas desde una mezcla de gases. Utilizándose la zeolitas y carbón activado como tamices moleculares. Por lo que en el proceso, la temperatura de esta técnica es equivalente a la

ambiental, y se adsorbe la especie del gas objetivo a alta presión y en seguida se disminuye la presión para que el material absorbente se desasorba; en otras palabras se baja la presión de los gases para ser absorbidos, a mayor presión más se absorbe el gas, y el gas se libera o desorbe cuando se reduce la presión.

Separación con Membrana. Es uno de los mejores métodos para la limpieza del biogás técnica y económicamente. El principio consiste en que a través de una membrana delgada algunos de los componentes del biogás son trasportados, y otros son retenidos. Existen dos métodos de separación con membrana, una separación gas-gas y la absorción gas-liquido. Las ventajas de la separación con membrana son que es de fácil operación, bajos requisitos de mantenimiento y consumo de energía, y es un proceso compacto ligero.

Separación Criogénica. Este método utiliza bajas temperaturas, cercano a los -90°C, combinado con presiones altas alrededor de 40 barres. Por lo que se necesita una seria de compresores e intercambiadores de calor en línea. Para que no se congele en las etapas de enfriamiento, el gas de alimentación se necesita seco y estar a temperatura del ambiente y presión atmosférica. El biogás pasa primeramente por el intercambiador de calor y reduciendo su temperatura a -70°C. Para después pasar por una serie de compresores e intercambiadores de calor que comprimen a 40 bares y enfrían el gas a -10°C antes de entrar a la columna de destilación. La última parte del proceso es la separación del CH₄ y del CO₂, entre otras impurezas.

Absorción Alcalina con Regeneración. Los procesos de absorción con soluciones alcalinas a bajas presiones son recomendables para la captura de dióxido de carbono. Además

estas soluciones se pueden regenera. Llevándose a cabo entre el componente líquido y el componente gaseoso absorbido una reacción química reversible. En estos procesos se utiliza sales con potasio o sodio a fin de obtener diluciones a pH 9 a 11.

Eliminación de Siloxanos. Los siloxanos suelen causar pérdida de estabilidad de las partes que giran a gran velocidad y desgastes en las piezas internas de las máquinas, por lo que suele encontrarse siloxanos lineales y cíclicos en el biogás; para eliminar o disminuir a los siloxanos del biogás no existe un método único. Sin embargo existen algunos métodos como la separación criogénica, la absorción en ácidos fuertes, la absorción con solventes orgánicos, absorción en gel de sílice, absorción en base fuerte y la adsorción sobre carbón activado.

Eliminación de Hidrocarburos y Compuestos Halogenados (HC y HCH). Los hidrocarburos y compuestos halogenados se pueden eliminar con carbón activado. Se utilizan en paralelo dos tubos: uno para la regeneración y otro para el tratamiento en la eliminación del HC y HCH. Se calienta el carbón activado a 200 °C para la regeneración, evaporándose los componentes absorbidos para ser retirados en seguida por un flujo de gas inerte.

Eliminación de Oxígeno (Aire). Las concentraciones de aire entre 0 y 4% son inofensivas, pero un biogás con 6% de metano y de aire entre 4 y 16% es explosivo. El oxígeno y el nitrógeno se pueden eliminar por membranas o adsorción a temperaturas bajas por oscilación de presión. Un control cuidadoso evitando que se introduzca aire en el biogás es más barato que el tratamiento.

Eliminación de NH3. El mantener una proporción entre valores de 15 y 30 de carbono/nitrógeno en la mezcla de sustrato que se alimenta en la digestión para producir biogás

permitirá evitar la acumulación de amoniaco. Se usa un proceso de lavado con ácido sulfúrico o ácido nítrico para extraer el amoniaco a gran escala. Así también, puede eliminarse con unidades llenas de carbón activado o en procesos de adsorción y absorción del agua. (Arrellano, y otros, 2017)

2.3 Estudios de Uso y Tratamiento del Biogás.

En estudios recientes con respecto a la obtención del biogás, como es el caso del proyecto denominado recuperación de metano y reducción de emisiones en PTAR Nuevo Laredo, Tamaulipas, México realizado por Blanco y Aguilar-Benítez (2018); tuvo como objetivo examinar la recuperación de energía de lodos de aguas residuales, aprovechando el metano generado en procesos anaerobios, además de reducir las emisiones de gases de efecto invernadero (GEI) en la Planta Internacional de Tratamiento de Aguas Residuales de Nuevo Laredo, Tamaulipas (PTAR-NL), mediante la evaluación de la eficiencia energética de la planta con un enfoque benchmarking y la estimación de la producción potencial de energía eléctrica teórica a partir del metano potencialmente capturado; algunos de los resultados que arrojaron fue que al aprovechar los lodos en la generación de energía en la PTAR-NL se disminuye las emisiones de GEI por el tratamiento de lodos en 21%, y aportaría en un 14% la energía requerida al generar la energía eléctrica a través de la recuperación de metano en la planta, además que mejora en 2% la eficiencia energética de la planta.

Así también en *Generación de energía en plantas de tratamiento de aguas residuales* (*PTAR*) se estimó el potencial de generación de energía eléctrica (utilizando biogás como fuente)

de la Planta de Tratamiento de Aguas Residuales Zona Noreste mediante cuatro métodos para cuantificación de producción de biogás.

De acuerdo con los resultados obtenidos, la PTAR Zona Noreste podría generar al día alrededor de 2,671.49 m³ de biogás, con un potencial energético de 17,312.59 kWh/día; de dicho potencial, se considera que la PTAR se autoabastecería con 13,503.82 kWh/día (de éstos el 40% es para electricidad y 38% sería destinado para energía térmica). (RAMÍREZ LÓPEZ, MEDRANO PÉREZ, & ESCOBEDO CAZÁN, 2020, pág. 28)

Así también menciona que en términos de emisiones existe la posibilidad de una reducción de un 78%, de una cantidad de 3,450.69 a 2,691.45 toneladas de CO₂eq al año. (RAMÍREZ LÓPEZ, MEDRANO PÉREZ, & ESCOBEDO CAZÁN, 2020).

En el artículo *Tratamiento de Aguas Residuales (Ptar) el Caso de la PTAR Zona Noreste, Villahermosa, México* de la revista de Energía de Latino América y el Caribe sobre Generación de energía en Planta de tratamiento de aguas residuales, explica de la determinación del potencial de generación de electricidad mediante el biogás como una fuente renovable en Tabasco, a fin de promover, impulsar su desarrollo e implementación. Cuyos resultados demuestran que al producir biogás en un promedio diario de 2,671.49 m³, se obtendría 17,312.59 kWh/día de potencial energético, por lo que la planta se podría abastecer con 13,503.82 kWh/día; aportando para electricidad un autoabastecimiento del 40%, brindando una reduciendo en un 78% de las emisiones de Gases de Efecto Invernadero. (Ramírez López, Medrano Pérez, & Escobedo-Cazán, 2020).

Para el 2018 se registró un total de 2540 plantas de tratamiento de aguas residuales en operación, con una capacidad instalada de 181, 152.22 l/s y un caudal tratado de 137 698.61 l/s, equivalente a un 64% del agua residual generada y colectada en los sistemas municipales. En el estado de Chiapas existen 34 Plantas municipales de tratamiento de aguas Residuales en operación. La PTAR- Paso Limón cuenta como parte de su proceso con filtros biológicos o rociadores. (Conagua, 2018).

Capítulo 3. Metodología

3.1 Producción de Gas Metano y Rendimiento del Proceso

La generación de biogás dependerá de varios factores, entre ellos se encuentra la temperatura, el Ph. composición química del afluente, entre otros; y de los cuales algunos de estos podrán manipularse, pero otros no.

Cálculo de Producción de Biogás. Para calcular la producción de biogás conforme a lo que explica Berktay y Nas (2007) existen varios métodos en el tratamiento de aguas residuales, dentro de las que destaca el cálculo con los sólidos volátiles en el afluente, la DQO en el afluente y que se digiere con una relación de producción de 0.35 m³ de biogás /kg de DQO, la estimación per cápita y la Demanda Bioquímica de Oxígeno. Sin embargo, durante esta investigación no podrá desarrollarse debido a que la PTAR- Paso Limón no proporcionó la información necesaria, lo cual habría permitido además verificar la eficiencia en la producción del biogás.

Sin embargo, se cuenta con el registro de los volúmenes de biogás producido una parte del 2015 y hasta el año 2020 en el biodigestor anaeróbico, al cual hasta el momento se le da ningún aprovechamiento y es quemado a cielo abierto. (Berktay & Nas, 2007)

3.2 Generación de Electricidad.

La generación de electricidad a partir de biogás se realiza con motores de combustión interna de chispa o turbinas de vapor. Este sistema tiene una baja eficiencia de 35% aproximadamente, por lo que la perdida de energía es muy alta.

Cálculo del Potencial Energético. Al considerar un poder calórico del mismo de 9.97 kWh/m³ (8569 kcal/m³) y en el biogás una concentración de 65% de metano (Chamy & Vivanco, 2007), su potencial energético se calcula de esta forma:

Potencial energético del biogás producido = promedio de biogás producido* $0.65 * 9.97^{\text{kWh}}/\text{m}^3$.

La metodología está basada en el apoyo de artículos y estudios realizados, además de contar con una base de datos de la institución municipal e información nacional e internacional del tema en estudio.

3.3 Cálculo para la Reducción de Gases de Efecto Invernadero (GEI)

En esta parte del proyecto se pretende estimar la reducción de emisiones de GEI mediante el uso de una de las notas metodológicas aprobadas y presentadas por Nolasco (2010) para proyectos de mecanismos de desarrollo limpio en plantas de tratamiento de aguas residuales AMS IIIH "Recuperación de Metano en Tratamiento de Aguas Residuales". Tomando una línea base de digestión aeróbica de los lodos generados y como proyecto potencial el implementar un sistema de digestión anaeróbico con recuperación de metano, y ser usado para generar electricidad en la PTAR- Paso Limón.

Por lo que esta reducción de emisiones se calcula mediante las emisiones bases y las emisiones del proyecto implementado, cuyas ecuaciones son las siguientes:

ER = BE - PE

 $BE = S*DOC*MCF_S*DOC_F*F*16/12*UF*GWP_{CH4} + (EC*EF)$

PE =S*DOC*DOC_F*F*16/12*L-(EG*EF)

Donde:

ER= Reducción de emisiones

BE = Emisiones de base

PE = Emisiones del proyecto

S = Cantidad de lodo (t/año).

DOC = Contenido de materia orgánica en el lodo generado (0.05 para lodo doméstico).

 $\mathrm{DOC}_{\mathrm{F}}=\mathrm{Fracci\acute{o}n}$ de contenido de materia orgánica (DOC) que se transforma en biogás (0.5).

MCFs = Factor de corrección de metano para el sistema de tratamiento del lodo. (Sitio de disposición no gestionado poco profundo =0.4)

UF = Factor de corrección por incertidumbre (0.94).

F = Fracción de metano en el biogás (0.5)

L = Fracción de biogás que se pierde en el sistema de captura, ruteo y utilización (valor sugerido 0.2).

GWP_{CH4} = Potencial de calentamiento global del metano (21 kgCo₂e/kgCH4).

EG = Excedente de energía (generación - consumo del proyecto), que desplace el uso de combustibles fósiles o electricidad (MWh/año).

EC = Energía consumida en forma de electricidad consumo de la planta (MWh/año).

 $EF = Factor \ de \ emisi\'on \ de \ la \ red \ el\'ectrica \ (0.527 \ tCO_2e \ / \ MWh). \ (Comisi\'on \ Reguladora$ de Energía, 2019)

Capítulo 4. Resultados

4.1. Determinación de la Cantidad de Producción de Gas Metano

De los volúmenes obtenidos de biogás se determinó el volumen promedio diario de cada mes, como se observa en la tabla 5.

Tabla 5

Volúmenes promedios diario de biogás (Nm3/día) producido en la PTAR-Limón

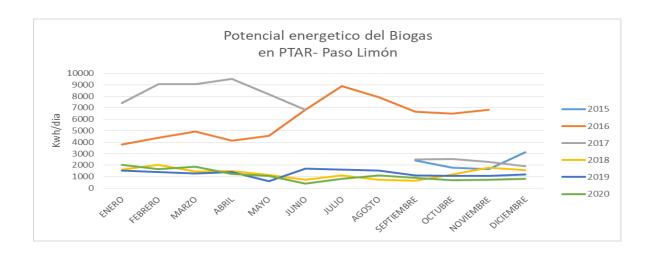
AÑO MES	2015	2016	2017	2018	2019	2020
ENERO		584.5	1142.1	247.3	237.0	313.7
FEBRERO		674.2	1397.9	316.0	219.2	252.5
MARZO		762.5	1398.0	224.6	196.2	285.0
ABRIL		637.6	1469.3	231.3	215.8	191.5
MAYO		704.6	1262.5	179.8	91.3	166.5
JUNIO		1055.3	1054.0	109.4	258.5	60.0
JULIO		1369.4		168.7	246.0	124.2
AGOSTO		1221.6		115.5	238.5	171.9
SEPTIEMBRE	375.1	1026.2	387.1	99.1	171.7	915.7
OCTUBRE	273.5	998.3	391.8	181.0	166.3	107.8
NOVIEMBRE	253.3	1056.0	352.6	275.5	161.2	111.4
DICIEMBRE	485.3		295.5	241.6	182.0	122.6

Nota: Elaboración propia de información proporcionada por la PTAR-Paso Limón

4.2. Generación de Electricidad.

De los volúmenes promedios diarios en cada mes se obtuvo el potencial energético diario en cada mes. De acuerdo a lo que se observa en los meses de junio 2016 a junio de 2017, se obtuvieron las mayores cantidades de potencial energético como se ve en la tabla 6 y figura 28.

Tabla 6


Potencial energético promedios diario de biogás (Kwh/día) producido en la PTAR-Limón

AÑO MES	2015	2016	2017	2018	2019	2020
ENERO		3787.8	7401.4	1602.6	1535.7	2033.0
FEBRERO		4369.2	9059.3	2048.1	1420.4	1636.4
MARZO		4941.5	9059.7	1455.4	1271.6	1846.7
ABRIL		4131.9	9521.8	1499.2	1398.4	1241.0
MAYO		4566.2	8181.3	1165.2	591.7	1079.0
JUNIO		6839.1	6830.4	708.8	1675.5	388.8
JULIO		8874.3		1093.3	1594.2	804.7
AGOSTO		7916.5		748.4	1545.9	1114.0
SEPTIEMBRE	2430.8	6650.2	2508.8	642.0	1112.4	915.7
OCTUBRE	1772.7	6469.6	2539.1	1173.2	1077.6	698.8
NOVIEMBRE	1641.2	6843.6	2285.0	1785.6	1044.4	721.9
DICIEMBRE	3144.7		1914.8	1565.6	1179.7	794.4

Nota: Elaboración propia de información proporcionada por la PTAR-Paso Limón.

Figura 28

Potencial energético promedios de biogás producido en la PTAR-Limón

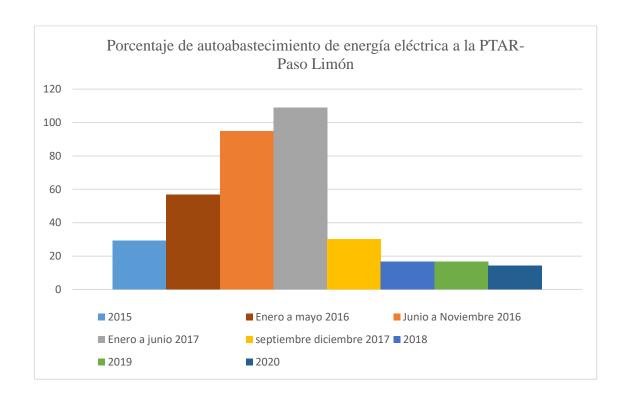
Nota: Elaboración propia de la información proporcionada por la PTAR-Paso Limón, SMAPA

De los datos proporcionados por la Planta del consumo de energía durante los años 2019 y 2020, se determinó un consumo diario en cada mes y un promedio de consumo diario del año 2020 y 2019, dando un valor de 7,666 KWH/día como se muestra en la tabla 7.

Tabla 7

Consumo de energía eléctrica mensual y diaria en la PTAR-Limón

MES	CONSUMO	CONSUMO	MES	CONSUMO	CONSUMO
WIES	KWH/mes	KWH/día	MES	KWH/mes	KWH/día
01/01/2010	266966	0.600	01/01/2020	221690	7.47.4
01/01/2019	266866	8609	01/01/2020	231680	7474
01/02/2019	202221	7222	01/02/2020	217715	7507
01/03/2019	257659	8312	01/03/2020	233343	7527
01/04/2019	218635	7053	01/04/2020	224919	7497
01/05/2019	267360	8625	01/05/2020	242343	7818
01/06/2019	252361	8412	01/06/2020	234313	7810
01/07/2019	250871	8093	01/07/2020	235970	7612
01/08/2019	243454	7853	01/08/2020	238983	7709
01/09/2019	232461	7749	01/09/2020	231197	7458
01/10/2019	234597	7568	01/10/2020	225390	7271
01/11/2019	215078	7169	01/11/2020	234337	7811
01/12/2019	194677	6280	01/12/2020	234244	7556


Nota: Elaboración propia de información proporcionada por la PTAR-Paso Limón.

Al obtener el consumo diario real de energía en la PTAR-Paso Limón, y comparar con lo que podría producir la planta a través del biodigestor anaerobio se resuelve que durante los meses de junio a noviembre de 2016 se obtuvo un aprovechamiento promedio de 95 % y de

enero a junio de 2017 un promedio de 109%. Siendo los años 2018 y 2019 los más bajos con un 17% y 2020 con 14% como se muestra en la figura 29.

Figura 29

Porcentaje de autoabastecimiento de energía eléctrica en la PTAR-Limón

Nota: Elaboración propia de la información proporcionada por la PTAR-Paso Limón

4.3. Cálculo para la Reducción de Gases de Efecto Invernadero (GEI)

La PTAR- Paso Limón consume en forma de electricidad un promedio de 2'810,337MWh/año, por lo que con esta información y sustituir los valores en las ecuaciones

correspondientes el resultado de las emisiones en la línea base de GEI de la PTAR- Paso Limón es de 16,333.04 ton CO₂/año.

BE= 112,858 ton/año* 0.05* 0.4* 0.5*0.5*16/12* 0.94* 21 kgCO₂e/kg_{CH4}+ (2,810.337 MWh/año* 0.527 ton CO₂/MWh)= 16,333.04 ton CO₂/año

Así también se estimó la generación de electricidad tomando los años de mayor generación de gas metano, que son los meses de junio 2016 a junio 2017, dando un promedio de 2'848,436.14 kWh/año, por lo que con esta información se realiza la estimación de las emisiones de GEI con proyecto (PE):

 $PE=112,858 \ ton/año*0.05*0.5*0.5*16/12* \ 0.2 - ((2,848.43614 \ MWh/año-2,810.337 \ MWh/año) *0.527 \ tonCO_2/MWh) = 356.11 \ tonCO_2/año$

Por lo que:

 $ER = 16,333.04 \text{ ton } CO_2/a\tilde{n}o - 356.11 \text{ ton} CO_2/a\tilde{n}o = 15,976.93 \text{ ton} CO_2/a\tilde{n}o.$

Permitiendo de esta manera reducir en un 98% al disminuir 15,976.93 toneladas equivalentes de dióxido de carbono, en comparación con las emisiones estimadas en la línea base.

4.4. Método de Purificación del Biogás para su Aprovechamiento en la Generación de Energía Eléctrica en la PTAR- Paso Limón

En el proceso de purificación del gas para su uso en la generación de energía eléctrica y autoabastecerse en la PTAR Paso Limón, se recomienda utilizar una torre de absorción con agua

ya que es eficiente, de bajo costo y sencilla; eliminando H₂S y CO₂; para posteriormente utilizar una torre de desabsorción y se pueda eliminar el H₂S del agua utilizada. El biogás puede pasar a través de un intercambiador de calor, a fin del que el vapor de agua que es contenido en el gas sea enfriado y se logre condensar. Una vez que el biogás ha pasado por el proceso de purificación estará listo para ser usado en la generación de energía eléctrica mediante el uso de motores de combustión interna.

.

Capítulo 5. Conclusiones y Recomendaciones

5.1. Conclusiones

La PTAR- Paso Limón, tiene un consumo promedio anual de energía eléctrica de 2'810,337 kWh/año. Por lo que si se le da el aprovechamiento al biogás producido en la digestión anaerobia de los lodos, cuya producción se vio mayormente reflejada durante los meses de junio 2016 a junio 2017; Esta podría autoabastecer de energía eléctrica en un 100% con una producción promedio de biogás de 1,204.2 Nm³/día, y con un potencial energético de 7,803.93 kWh/día o en otras palabras 2'848,436.14 kWh/año. Para las autoridades municipales de Tuxtla Gutiérrez representa un benéfico económico este aprovechamiento de los lodos en la generación biogás, y por ende el autoconsumo de energía eléctrica en la PTAR-Paso Limón. Permitiendo con esto que la planta sea más eficiente en términos energéticos. Al comparar los resultados con los datos que presenta la SEMARNAT et al (2017) en la PTAR Paso Limón y en donde especifica que utilizo el modelo denominado Biogás Wastewater Assessment Technology Tool (BioWATT), del Global Methane Initiative para determinar capacidad potencial de generación de energía eléctrica, y cuyo dato es de 9 675 kWh/día, al comparar este con el potencial energético de 7,803.93 kWh/día, se concluye que existe una ligera diferencia al comparar con lo producido.

Al aprovechar el biogás se contribuye en una reducción del 98% en las emisiones de gases de efecto invernadero en toneladas equivalentes de Dióxido de Carbono, siendo esto un benéfico ambiental muy importante. Durante este trabajo no se han considerado las variables económicas, sin embargo los beneficios energéticos y ambientales que proporciona permite

visualizar que puede ser viable de manera económica. Por lo que es fundamental tener las capacidades técnicas y los instrumentos políticos-financieros que permitan que se desarrollen proyectos de este tipo.

A fin de crear las bases para la aprobación y fortaleza en el desarrollo de proyectos de este tipo y de mitigar el impacto de estas emisiones en el calentamiento global, dentro de las rutas tecnológicas y de instrumentación desarrollado por el Instituto Nacional de Ecología y Cambio Climático (INECC), se encuentra una de las medidas prioritarias de mitigación con respecto al sector de aguas residuales en México, en el que plantea la producción de biogás por tratamiento anaeróbico de los lodos que provienen de las aguas residuales municipales tratadas y el aprovechamiento del gas para generar energía eléctrica y de esta manera autoabastecerse. (Instituto Nacional de Ecología y Cambio Climático; Coordinación General de Mitigación del Cambio Climático, 2018)

5.2. Recomendaciones

A fin de generar la cantidad de energía eléctrica suficiente para la PTAR, la empresa debe de operar en las condiciones adecuadas por lo que deberá su caudal estar en el estado máximo, realizar los mantenimientos correctivos a las diferentes áreas de proceso, entre ellos las áreas de espesado, la zona de abastecimiento de polímeros, área de desarenado y cloración. Además presentan dificultades para la disposición final de los lodos; lo cual está provocando la poca generación de biogás actualmente. Por lo que al hacer los ajustes necesarios e implementar los equipos necesarios entre estos equipos de generación eléctrica, permitirá un aumento en la cantidad de biogás producido así como en el aprovechamiento energético del biogás captado.

Además se reducirá el colocar los lodos en sitios de disposición y se le dará un mayor aprovechamiento.

Así también, es necesario evaluar la producción metanogenica de los lodos en el biodigestor de la PTAR- Paso Limón, y a fin de mejorar la eficiencia del proceso y aumentar el porcentaje de metano se necesita aumentar el tiempo de estudio o retención bajo temperaturas promedio mesófilas de 30 a 35°C.

Por lo que como complemento a este estudio también se debe desarrollar normas específicas que estimulen la valorización energética en el tratamiento de los lodos generados en PTAR para la producción de biogás y al mismo tiempo la búsqueda de financiamiento alternativos tomando como base los propuestos por el INECC, a fin de cubrir los costos necesarios para la implementación de la tecnología necesaria en la captura y aprovechamiento del biogás generado del tratamiento de los lodos de PTAR. (Instituto Nacional de Ecología y Cambio Climático; Coordinación General de Mitigación del Cambio Climático, 2018).

5.3. Limitaciones

Durante el proceso de investigación en la PTAR- Paso Limón se pretendía determinar no únicamente, la cantidad de gas metano generado sino determinar la eficiencia del digestor anaerobio; sin embargo los estudios de laboratorio del influente, el afluente de las aguas residuales así como la de los lodos a la salida, no fueron proporcionados. Lo que origino a que además no se pudiera realizar el diseño de los equipos necesarios para el tratamiento adecuado al biogás y por ende determinar el panorama del costo del proyecto.

Así también a mediados del 2016 y primer semestre del 2017 hubo una mejor producción de gas metano, debido a que el gobierno municipal contrato los servicios de una empresa particular para operar la planta; y se produjo un decremento en la producción en la planta a mediados del 2017, y los años 2018 al 2020 como parte del termino de contrato con la empresa y debido a que la PTAR comenzó a presentar varias dificultades en la operación de sus equipos.

Capítulo 6.-Referencias

- Aguilar-Benitez, I., & Blanco, P. (marzo-abril de 2018). Recuperacion de metano y redución de emisones en PTAR Nuevo Laredo, Tamaulipas, Mexico. *Tecnologia y Ciencias del Agua*, 9(2), 73-96.
- Arrellano, L., Dorado, A. D., Fortuny, M., Gabriel, D., Gamisams, X., González-Sánchez, A., . . . Sierra, H. (2017). *Purificación y usos del biogás*. (H. Sierra, & D. Grabriel, Edits.) Barcelona, Spain: Universitad Autònoma de Barcelona. Obtenido de Recuperado de https://elibro.net/es/ereader/uvm/50402?page=24.
- Baader, W., Dohne, E., & Brenndorfer, M. (1978). Biogas in Theorie und Praxis., . (*KTBL-Scrift No. 229*). Schriftenvertrieb in Landwirtschaftsverlag, Hiltrup., Germany: KTBL.
- Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., & Vavilin, V. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology: A Journal of the International Association on Water Pollution Research, 45(10), 65-73. Recuperado el 26 de 12 de 2020, de http://enzyme.chem.msu.ru/ekbio/article/ADM1-WST.pdf
- Berktay, A., & Nas, B. (2007). Biogas Production and Utilization Potential of Wastewater

 Treatment Sludge. Energy Sources, Part A: Recovery, Utilization, and Environmental

 Effects, (Vol. 30). Obtenido de https://doi.org/10.1080/00908310600712489
- Casanovas, G., Della, F., Reymundo, F., & Serafin, R. (2019). *Guía teórico-práctica sobre el biogás y los biodigestores. FAO.* Obtenido de http://www.probiomasa.gob.ar/_pdf/GuiadeBiogasyBiodigestores-19-08-29.pdf
- Castells, E. (2012). *Tratamiento y valorización energética de residuos* (Ediciones Díaz de Santos ed.). Obtenido de https://elibro.net/es/ereader/uvm/62549
- Chamy, R., & Vivanco, E. (2007). *Potencial de biogás. IDENTIFICACIÓN Y CLASICACIÓN DE LOS DISTINTOS TIPOS DE BIOMASA DISPONIBLES EN CHILE PARA LA GENERACIÓN DE BIOGÁS*.

 doi:https://energypedia.info/images/d/dc/Potencial_Biogas_Chile.pdf

- Comisión Reguladora de Energía. (28 de febrero de 2019). Factor de Emisión del Sistema Eléctrico Nacional. Ciudad de México, México, México. doi:https://www.gob.mx/cms/uploads/attachment/file/442910/Aviso_Factor_de_Emisiones_2018.pdf
- Conagua:. (2018). Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de Aguas. Ciudad de Mexico. Obtenido de www.gob.mx/cms/uploads/attachment/file/504452/Inventario_Nacional_Plantas_2018. pdf
- Coordinación General de Mitigación del Cambio Climático; Instituto Nacional de Ecología y Cambio Climático. (Noviembre de 2018). Desarrollo de rutas de instrumentación de las contribuciones nacionalmente determinadas en materia de mitigación de gases y compuestos de efecto invernadero (GyCEI) del Sector Aguas Residuales de México. Ciudad de México, México. Obtenido de https://www.gob.mx/cms/uploads/attachment/file/461753/Aguas_residuales.pdf
- de Compostaje, R. E. (2014). *Residuos urbanos I.4*. Madrid, Spain: Mundi-Prensa. Obtenido de Recuperado de https://elibro.net/es/ereader/uvm/55265?page=241.
- FAO. (2019). Guía teórico-práctica sobre el biogás y los biodigestores. Buenos Aires. Buenos Aires, Argentina: Colección Documentos Técnicos N° 12. . Recuperado el 14 de Enero de 2021, de http://www.fao.org/publications/card/es/c/CA5082ES/
- GEF, M. /. (2011). Manual de biogás. Santiago, Chile. Obtenido de http://www.fao.org/3/as400s/as400s.pdf
- Kaspar, H. F., & Wuhrmann, K. (1978). Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. *Appl. Environ. Microbiol.*, 36(1), 1-7.
- Montalvo, S., & Guerrero, L. (2003). *Tratamiento Anaerobio de Residuos: Producción de Biogás* (1 ed.). (S. Montalvo, Ed.) Valparaiso, Chile: Universidad Técnica Federico Santa María.

- Nogués, F. S., Rezeau, A. (., & García-Galindo, D. (2010). *Energía de la biomasa* (Vol. II). Zaragoza, España: Prensas de la Universidad de Zaragoza. Obtenido de Recuperado de https://elibro.net/es/ereader/uvm/44859?page=7.
- Nolasco, D. A. (2010). Desarrollo de proyectos MDL en plantas de tratamiento de aguas residuales. (*Nota técnica No. 116*). (Banco Interamericano de Desarrollo, Ed., & S. d. Ambiente., Recopilador) Washington, DC, USA. Obtenido de https://publications.iadb.org/publications/spanish/document/Desarrollo-de-proyectos-MDL-en-plantas-de-tratamiento-de-aguas-residuales.pdf
- Perez Mendel, J. A. (2010). TESIS: ESTUDIO Y DISEÑO DE UN BIODIGESTOR PARA APLICACION EN PEQUEÑOS GANADEROS Y LECHEROS. Santiago, Chile. Recuperado el 18 de Enero de 2021, de http://repositorio.uchile.cl/bitstream/handle/2250/103926/cf-perez_jm.pdf?sequence=3
- RAMÍREZ LÓPEZ, T. P., MEDRANO PÉREZ, O. R., & ESCOBEDO CAZÁN, L. A. (junio de 2020). Generación de energía en plantas de tratamiento de aguas residuales (PTAR). ENERLAC. Revista de energía de Latinoamérica y el Caribe, 4(1), 12-30. Recuperado el 10 de diciembre de 2020, de http://enerlac.olade.org/index.php/ENERLAC/article/view/128
- Ramírez López, T. P., Medrano Pérez, O. R., & Escobedo-Cazán, L. A. (Junio de 2020).

 TRATAMIENTO DE AGUAS RESIDUALES (PTAR). EL CASO DE LA PTAR

 ZONA NORESTE, VILLAHERMOSA, MÉXICO. Energía de Latinoamerica y el

 Caribe, IV(1), 12-30.
- Reyes Aguilera, E. A. (2018). Generación de biogás mediante el proceso de digestión anaerobia, a partir del aprovechamiento de sustratos orgánicos. *Revista Científica De FAREM-Estelí*(24), 60-81. Obtenido de https://doi.org/10.5377/farem.v0i24.5552
- Reyes-Ortega, Y., Sanchez-Reyes, C., Patiño-Iglesias, M., Alcántara-Flores, J., Pérez Cruz, M., & Ortiz-Muñoz, E. (2016). DETERMINACIÓN DEL POTENCIAL BIOQUÍMICO DE METANO (PBM) DE RESIDUOS DE FRUTAS Y VERDURAS

- EN HOGARES. *Revista Internacional de Contaminación Ambiental*, *32*(2), 191-198. doi:http://dx.doi.org/10.20937/RICA.2016.32.02.05
- Soroa del Campo, S., Lopetegui Garnika, J., Almandoz Peraita, A., & García de las Heras, J. (Diciembre de 2005). Diseño de reactores híbridos anaerobios para el tratamiento de aguas residuales industriales. *Tecnología del Agua*(267), 60-67. Recuperado el 27 de Diciembre de 2020, de http://www.bibliotecagbs.com/archivos/ta_267_1_05.pdf
- UNESCO, O.-A. (2020). *Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020: Agua y Cambio Cimatico*. UNESCO, Paris. Obtenido de https://es.unesco.org/themes/water-security/wwap/wwdr/2020

Capítulo 7.-Anexos

Anexo 1: Concentrado mensual de producción de biogás en el biodigestor anaerobio de la PTAR-Paso Limón.

	Me	edidor de bio	ogas	Me	didor de bio	ogas	Me	didor de bio	gas	Me	edidor de bio	gas
	Totaliza	do septiem	bre 2015	Totaliz	ado octubr	e 2015	Totaliza	do noviemb	ore 2015	Totaliza	ado diciemb	re 2015
	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado
	Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
1	27,075	27,478	403	39,395	39,598	203	48,392	48,506	114	56293	56665	373
2	27,511	28,046	535	39,614	39,780	166	48,509	48,691	182	56665	57092	427
3	28,077	28,561	484	39,834	40,018	183	48,691	48,912	221	57092	57538	446
4	28,611	28,984	373	40,037	40,071	34	48,970	49,119	149	57545	57930	385
5	29,020	29,423	403	40,075	40,280	206	49,163	49,326	163	57937	58163	226
6	29,460	29,997	537	40,297	40,896	600	49,326	49,459	133	58164	58382	218
7	29,998	30,381	382	40,937	41,223	287	49,163	49,762	599	58385	58650	265
8	30,381	30,770	390	41,261	41,484	224	49,762	49,954	192	59020	59348	328
9	30,770	31,157	386	41,484	42,001	517	49,954	50,154	199	59368	59884	516
10	31,177	31,400	223	42,145	42,322	176	50,188	50,322	135	59918	60636	718
11	31,400	31,867	467	42,330	42,543	214	50,322	50,368	45	59918	60636	718
12	31,910	32,401	491	42,549	42,880	330	50,421	50,498	77	60676	61259	583
13	32,435	32,957	522	42,882	42,957	76	50,714	50,800	86	61273	61789	517
14	33,011	33,279	267	42,967	43,186	220	50,800	51,012	212	61816	62615	798
15	33,309	34,039	730	43,186	43,312	300	51,015	51,047	33	62654	63197	543
16	34,117	34,556	440	43,312	43,968	788	51,047	51,212	165	63225	63625	400
17	34,620	35,159	539	44,130	44,435	305	51,212	51,412	200	63629	64201	572
18	35,207	35,711	505	44,435	44,691	256	51,412	51,693	281	64201	64705	504
19	35,775	36,192	417	44,695	45,064	370	51,711	52,061	350	64708	65047	339
20	36,214	36,686	471	45,064	45,278	214	52,065	52,362	297	65063	65563	500
21	36,721	37,122	400	45,278	45,339	62	52,362	52,592	230	65586	66008	422
22	37,410	37,534	125	45,339	45,949	610	52,624	53,078	454	66045	66481	436
23	37,548	37,793	245	45,985	46,194	209	53,071	53,472	401	66518	66963	445
24	37,816	38,077	262	46,194	46,564	370	53,483	53,990	506	67008	67757	749
25	38,083	38,366	282	46,565	46,942	377	54,004	54,336	332	67784	68512	728
26	38,375	38,619	244	47,022	47,204	183	54,350	54,681	331	68547	69162	615
27	38,633	38,836	203	47,210	47,471	261	54,706	55,050	344	69184	69691	508
28	38,848	39,050	202	47,487	47,710	223	55,075	55,340	266	69704	70193	489
29	39,056	39,258	202	47,710	47,957	247	55,354	55,681	328	70210	70671	461
30	39,268	39,391	123	47,973	48,158	185	55,717	56,293	576	70696	71102	405
31	Tota	l Nm3	11,252.70	48,158	48,246	88	Total	Nm3	7,597.70	71109	71518	409
				Total	Nm3	8,479.70				Tota	l Nm3	15,042.90

Me	didor de bio	gas	Me	didor de	biogas	Me	didor de bio	ogas	Me	didor de bi	ogas	Me	edidor de bi	ogas	Me	didor de bio	ogas
Totali	zado enero	2016	Totaliz	ado febr	ero 2016	Totali	zado marzo	2016	Total	izado abril	2016	Totali	izado mayo	2016	Totali	zado Junio	2016
FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
71520	71994	474	90280	90962	682	110,878	111,730	852	134,550	135,287	737	153,604	154,426	822	175,524	176,555	1031
71994	72515	520	90994	91538	544	111,730	112,670	940	135,287	135,708	421	154,426	154,926	500	176,555	177,422	867
72516	73178	663	91560	92115	555	112,670	113,262	592	135,708	136,156	448	154,926	155,422	496	177,422	178,577	1155
73178	73786	607	92125	92610	485	113,262	113,953	691	136,179	136,947	768	155,422	156,143	721	178,577	179,873	1296
73789	74332	543	92613	93224	610	113,953	114,794	841	136,947	137,500	553	156,143	156,890	747	179,873	180,912	1039
74375	75015	640	93246	93761	515	114,794	115,547	753	137,500	138,605	1105	156,890	157,589	699	180,912	181,796	884
75041	75482	441	93794	94453	659	115,547	116,414	867	138,605	139,007	402	157,589	158,221	632	181,796	182,756	960
75516	75977	461	94510	95054	544	116,414	117,236	822	139,007	139,891	884	158,221	158,824	603	182,756	183,662	906
75980	76257	278	95101	96019	918	117,236	118,140	904	139,891	140,440	549	158,824	159,449	625	183,662	184,678	1016
76258	76680	422	96073	96632	560	118,140	119,039	899	140,440	140,857	417	159,449	160,075	626	184,678	185,299	621
76716	77075	359	96696	97257	561	119,073	119,829	756	140,857	141,345	488	160,075	160,741	666	185,299	186,856	1557
77075	77425	350	97316	98037	720	119,829	120,776	947	141,345	142,026	681	160,741	161,416	675	186,856	187,965	1109
77430	77807	377	98093	98692	600	120,776	121,854	1078	142,026	142,710	684	161,423	162,108	685	187,965	188,943	978
77854	78243	389	98747	99468	721	121,854	122,628	774	142,716	143,470	754	162,108	162,908	800	188,943	190,149	1206
78274	78577	304	99511	100402	891	122,628	123,688	1060	143,470	144,159	689	162,903	163,651	748	190,149	190,956	807
78607	79141	533	100415	100985	570	123,688	124,405	717	144,159	144,878	719	163,654	164,464	810	190,956	191,687	731
79142	79507	365	100985	101770	785	124,405	125,407	1002	144,878	145,312	434	164,531	165,122	591	191,687	192,313	626
79515	80478	963	101770	102548	778	125,407	126,325	918	145,325	145,936	611	165,123	165,883	760	192,313	193,067	754
80491	81422	932	102557	103252	695	126,325	127,109	784	145,941	146,523	582	165,883	166,773	890	193,067	193,614	547
81426	82657	1231	103252	103978	726	127,109	127,708	599	146,523	147,272	749	166,773	167,540	767	193,614	194,545	931
82708	83642	934	104443	104897	454	127,708	128,232	524	147,272	148,008	736	167,540	168,229	689	194,545	195,237	692
83654	84375	720	104897	105449	552	128,232	128,731	499	148,008	148,748	740	168,229	169,008	779	195,237	196,496	1259
84385	85258	873	105449	106425	976	128,731	129,438	707	148,748	149,269	521	169,008	169,892	884	196,497	197,474	977
85285	85913	628	106425	107234	809	129,438	130,004	566	149,269	149,893	624	169,892	170,559	667	198,062	199,367	1305
85988	86686	698	107234	107920	686	130,004	130,435	431	149,893	150,599	706	170,559	171,234	675	199,367	200,457	1090
86704	87326	622	107920	108631	711	130,435	130,948	513	150,599	151,199	600	171,234	171,910	676	200,464	201,536	1072
87347	87933	586	108631	109500	869	130,948	131,399	451	151,199	151,926	727	171,910	172,560	650	201,536	202,782	1246
87938	88500	562	109500	110162	662	131,399	132,254	855	152,443	153,097	654	172,560	173,185	625	202,782	204,080	1298
88513	89076	563	110162	110878	716	132,254	133,188	934	153,097	153,604	507	173,189	173,899	710	204,080	205,562	1482
89084	89634	550				133188	133789	601				173899	174495	596	205,562	207780	2218
89701	90231	530				133789	134550	761				174495	175524	1029			0
Total	Nm3	18,119.44	Total	Nm3	19,551.80	Tota	Nm3	#######	Total	Nm3	18,490.00	Total	l Nm3	21,843.00	Total	Nm3	31,660.00

Me	edidor de bi	iogas	Me	edidor de bi	ogas		Me	didor de bi	ogas	Med	didor de b	iogas	Me	didor de b	oiogas
Tota	lizado Julio	2016	Totali	zado Agos	to 2016		Totalizad	do Septien	hro 2016	Totaliza	do Octu	bre 2016	Tota	izado Nov	/iembre
Tota	ilizauo Julio	2010	TUtall	zauu Ayus	10 2010		TUlalizat	ao Septien	IDIE ZUTU	TUlaliza	iuo Ociu	016 2010		2016	
FIT-	1001	Totalizado	FIT-	1001	Totalizado		FIT-1001		Totalizado	FIT-1001		Totalizado	FIT-100	1	Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicia	Lec. Final	
207,780	208,478	698	250,783	252,232	1449	1	288,652	289,842	1,190	311,228	312,120	892	342,176	342,956	780
208,478	209,850	1372	252,232	253,650	1418	2	289,842	290,989	1,147	312,120	313,060	940	342,956	343,574	618
209,850	211,386	1536	253,650	254,906	1256	3	290,989	290,989	0	313,060	313,787	727	343,574	344,594	1,020
211,386	213,098	1712	254,906	255,721	815	4	290,989	290,989	0	313,787	314,459	672	344,594	345,492	898
213,098	213,795	697	255,721	256,396	675	5	290,989	290,989	0	314,459	315,224	765	345,492	346,336	844
213,795	215,353	1558	256,396	257,175	779	6	290,989	290,989	0	315,224	316,529	1,305	346,336	347,238	902
215,353	216,273	920	257,175	258,136	961	7	290,989	290,989	0	316,529	317,537	1,008	347,238	347,769	531
216,273	217,458	1185	258,136	259,087	951	8	290,989	290,989	0	317,537	318,307	770	347,769	349,305	1,536
217,458	218,826	1368	259,087	260,277	1190	9	290,989	290,989	0	318,307	318,945	638	349,305	350,505	1,200
218,826	220,811	1985	260,277	262,206	1929	10	290,989	290,989	0	318,945	319,783	838	350,505	351,662	1,157
220,811	223,045	2234	262,206	263,525	1319	11	290,989	291,218	229	319,783	320,713	930	351,662	352,787	1,125
223,045	223,796	751	263,525	264,801	1276	12	291,218	291,915	697	320,713	321,781	1,068	352,787	353,484	697
224,348	225,655	1307	264,801	266,444	1643	13	291,915	292,540	625	321,781	322,628	847	353,484	354,132	648
225,655	226,782	1127	266,444	267,450	1006	14	292,540	292,792	252	322,628	323,645	1,017	354,132	355,150	1,018
226,782	227,558	776	267,450	268,352	902	15	292,792	293,566	774	323,645	324,828	1,183	355,150	356,814	1,664
227,558	229,287	1729	268,352	269,758	1406	16	293,566	294,354	788	324,828	325,891	1,063	356,814	358,350	1,536
229,287	230,664	1377	269,758	271,071	1313	17	294,354	295,636	1,282	325,891	327,404	1,513	358,350	359,340	990
230,664	231,614	950	271,071	272,365	1294	18	295,636	296,464	828	327,404	328,698	1,294	359,340	360,202	862
231,614	232,887	1273	272,365	273,640	1275	19	296,464	297,803	1,339	328,698	329,749	1,051	360,202	361,339	1,137
232,887	234,826	1939	273,640	275,021	1381	20	297,803	298,986	1,183	329,749	330,948	1,199	361,339	363,023	1,684
234,826	235,934	1108	275,021	276,439	1418	21	298,986	300,199	1,213	330,948	331,836	888	363,023	364,189	1,166
235,934	237,505	1571	276,439	277,596	1157	22	300,199	301,779	1,580	331,836	333,001	1,165	364,189	365,003	814
237,505	239,130	1625	277,596	278,518	922	23	301,779	303,273	1,494	333,001	334,176	1,175	365,003	365,776	773
239,130	240,041	911	278,518	280,254	1736	24	303,273	304,590	1,317	334,176	334,983	807	365,776	366,792	1,016
240,041	241,909	1868	280,254	281,250	996	25	304,590	305,718	1,128	334,983	336,877	1,894	366,792	367,750	958
241,909	243,580	1671	281,250	282,079	829	26	305,718	307,106	1,388	336,877	338,100	1,223	367,750	369,031	1,281
243,580	245,413	1833	282,079	283,208	1129	27	307,106	308,904	1,798	338,100	338,864	764	369,031	370,149	1,118
245,413	246,035	622	283,208	284,993	1785	28	308,904	309,887	983	338,864	339,404	540	370,149	371,539	1,390
246,035	247,835	1800	284,993	286,128	1135	29	309,887	310,515	628	339,404	340,301	897	371,539	372,600	1,061
247,835	248,802	967	286,128	287,706	1578	30	310,515	311,228	713	340,301	341,345	1,044	372,600	373,857	1,257
248,802	250,783	1981	287,706	288,652	946	31			0	341,345	342,176	831	· ·		0
Total	l Nm3	42,451.00	Total	Nm3	37,869.00		Total Nm3		22,576.00	Total Nm:	3	#######	Total Nr	n3	31,681.00

M	edidor de bioga	ns	Me	edidor de biog	gas	Me	didor de bio	gas		Me	didor de biog	gas	Me	didor de biog	gas	Me	didor de bio	igas
	ENERO'17		F	EBRERO'1	7		MARZO'17				ABRIL'17			MAYO'17			JUNIO'17	
FIT-1	1001	Totalizado	FIT-1	001	Totalizado	FIT-	1001	Totalizado		FIT-1	001	Totalizado	FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Le	c. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
407,610	408,329	719	443,015	444,759	1,744	482,157	483,482	1,325	5	525,495	527,509	2,014	569,574	569,885	311	608,710	609,627	917
408,329	409,099	770	444,759	446,109	1,350	483,482	484,573	1,091	5	527,509	529,067	1,558	569,885	570,589	704	609,627	610,517	890
409,099	410,134	1,035	446,109	447,336	1,227	484,573	486,740	2,167	5	529,067	530,444	1,377	570,589	572,282	1,693	610,517	612,042	1,525
410,134	411,061	927	447,336	448,650	1,314	486,740	487,820	1,080	5	530,444	532,065	1,621	572,282	573,435	1,153	612,042	612,911	869
411,061	412,340	1,279	448,650	450,077	1,427	487,820	489,685	1,865	5	532,065	533,189	1,124	573,435	574,519	1,084	612,911	613,676	765
412,340	413,888	1,548	450,077	451,866	1,789	489,685	490,828	1,143	5	533,189	534,956	1,767	574,519	576,248	1,729	613,676	614,657	981
413,888	415,274	1,386	451,866	452,878	1,012	490,828	492,765	1,937	5	534,956	536,160	1,204	576,248	577,805	1,557	614,657	615,387	730
415,274	416,276	1,002	452,878	453,932	1,054	492,765	494,221	1,456	5	536,160	538,313	2,153	577,805	579,452	1,647	615,387	616,780	1,393
416,276	417,674	1,398	453,932	455,434	1,502	494,221	495,494	1,273	5	538,313	539,777	1,464	579,452	580,695	1,243	616,780	617,843	1,063
417,674	418,918	1,244	455,434	456,889	1,455	495,494	497,379	1,885	5	539,777	541,220	1,443	580,695	582,470	1,775	617,843	618,963	1,120
418,918	420,124	1,206	456,889	457,962	1,073	497,379	499,811	2,432	5	541,220	542,557	1,337	582,470	583,561	1,091	618,963	620,055	1,092
420,124	421,110	986	457,962	459,563	1,601	499,811	501,251	1,440	5	542,557	544,452	1,895	583,561	585,320	1,759	620,055	621,358	1,303
421,110	422,140	1,030	459,563	461,424	1,861	501,251	502,510	1,259	5	544,452	545,889	1,437	585,320	586,736	1,416	621,358	621,358	0
422,140	423,162	1,022	461,424	462,810	1,386	502,510	503,991	1,481	5	545,889	548,534	2,645	586,736	588,044	1,308	621,358	621,358	0
423,162	424,198	1,036	462,810	464,051	1,241	503,991	505,184	1,193	5	548,534	549,963	1,429	588,044	588,930	886	621,358	621,358	0
424,198	425,355	1,157	464,051	465,772	1,721	505,184	506,595	1,411	5	549,963	551,263	1,300	588,930	590,900	1,970	621,358	621,358	0
425,355	426,677	1,322	465,772	467,099	1,327	506,595	508,377	1,782	5	551,263	552,363	1,100	590,900	592,155	1,255	621,358	621,358	0
426,677	428,008	1,331	467,099	468,377	1,278	508,377	509,195	818	5	552,363	553,296	933	592,155	593,532	1,377	621,358	621,358	0
428,008	428,976	968	468,377	469,587	1,210	509,195	510,607	1,412	5	553,296	554,299	1,003	593,532	595,112	1,580	621,358	621,358	0
428,976	430,362	1,386	469,587	471,050	1,463	510,607	511,447	840	5	554,299	555,765	1,466	595,112	596,466	1,354	621,358	621,358	0
430,362	431,556	1,194	471,050	472,554	1,504	511,447	512,911	1,464	5	555,765	557,622	1,857	596,466	597,709	1,243	621,358	621,358	0
431,556	433,484	1,928	472,554	473,781	1,227	512,911	514,241	1,330	5	557,622	559,309	1,687	597,709	598,988	1,279	621,358	621,358	0
433,484	434,382	898	473,781	474,951	1,170	514,241	515,239	998	5	559,309	560,861	1,552	598,988	600,275	1,287	621,358	621,358	0
434,382	435,133	751	474,951	476,079	1,128	515,239	516,740	1,501	5	560,861	562,223	1,362	600,275	601,584	1,309	621,358	621,358	0
435,133	436,216	1,083	476,079	477,672	1,593	516,740	517,498	758	5	562,223	563,914	1,691	601,584	602,890	1,306	621,358	621,358	0
436,216	436,942	726	477,672	478,689	1,017	517,498	518,882	1,384	5	563,914	565,389	1,475	602,890	604,099	1,209	621,358	621,358	0
436,942	438,587	1,645	478,689	480,458	1,769	518,882	520,169	1,287	5	565,389	566,632	1,243	604,099	605,112	1,013	621,358	621,358	0
438,587	439,556	969	480,458	482,157	1,699	520,169	521,156	987	5	566,632	568,375	1,743	605,112	606,164	1,052	621,358	621,358	0
439,556	440,723	1,167				521,156	522,552	1,396	5	568,375	568,972	597	606,164	607,233	1,069	621,358	621,358	0
440,723	441,782	1,059				522,552	524,182	1,630	5	568,972	569,574	602	607,233	607,971	738	621,358	621,358	0
441,782	443,015	1,233				524,182	525,495	1,313					607,971	608,710	739			
Total Nm³		35,405	Total Nm³		39,142	Total Nm³		43,338	To	otal Nm³		44,079	Total Nm³		39,136	Total Nm ³		12,648

Med	didor de bio	gas	Me	didor de bio	gas		Me	didor de bio	gas	Me	edidor de bio	ogas
	SEP'17			OCT'17				NOV'17			DIC'17	
FIT-1001		Totalizado	FIT-1001		Totalizado	F	FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
621,358	621,358	300	630,649	630,999	350		642,795		270	653,373		280
621,358	621,358	400	630,999	631,289	290				275			289
621,358	621,358	421	631,289	631,744	455				272			285
621,358	621,358	432	631,744	631,944	200		643,612	643,791	179			287
621,358	621,358	467	631,944	632,231	287		643,791	643,974	183			302
621,358	621,358	470	632,231	632,518	287		643,974	644,891	917	654,816	655,265	449
621,358	624,628	780	632,518	632,806	288		644,891	645,115	224	655,265	655,490	225
624,628	624,628	0	632,806	633,156	350		645,115		340	655,490	0	300
624,628	624,628	0	633,156	633,559	403				338			315
624,628	624,628	0	633,559	633,959	400				350			322
624,628	624,628	0	633,959	634,374	415		646,143	646,463	320	656,427	656,970	543
624,628	624,879	251	634,374	634,799	425		646,463	646,739	276	656,970		0
624,879	625,129	250	634,799	635,189	390		646,739	646,989	250			142
625,129	625,383	254	635,189	635,595	406		646,989	647,226	237	657,112	657,535	423
625,383	625,631	248	635,595	636,083	488		647,226	647,475	249	657,535	657,885	350
625,631	625,631	0	636,083	636,580	497		647,475	648,365	890	657,885	658,259	374
625,631	625,631	0	636,580	636,811	231		648,365	648,753	388	658,259	658,484	225
625,631	626,531	900	636,811	636,879	68		648,753	649,157	404	658,484	658,839	355
626,531	626,538	7	636,879	637,354	475		649,157	649,557	400	658,839	659,134	295
626,538	626,896	358	637,354	638,069	715		649,557	649,957	400	659,134	659,395	261
626,896	627,224	328	638,069	638,569	500		649,957	650,209	252	659,395	659,735	340
627,224	627,231	7	638,569	639,099	530		650,209	650,486	277	659,735		250
627,231	627,803	572	639,099	639,350	251		650,486	650,942	456			248
627,803	628,353	550	639,350	639,817	467		650,942	651,271	329			249
628,353	628,653	300	639,817	640,207	390		651,271	651,511	240			251
628,653	629,072	419	640,207	640,587	380		651,511	651,749	238			247
629,072	629,425	353	640,587	640,987	400		651,749	652,432	683			246
629,425	630,145	720	640,987	641,377	390		652,432	652,662	230			250
630,145	630,395	250	641,377	641,767	390		652,662	653,012	350			248
630,395	630,649	254	641,767	642,267	500		653,012	653,373	361			245
			642,267	642,795	528		653,373			661,969	662,237	268
Total Nm³		9,291	Total Nm³		12,146		Total Nm³		10,578	Total Nm³		8,864

M	edidor de bioga	S	Me	edidor de biog	gas	Me	didor de bio	gas	Me	didor de bio	gas	Me	didor de bio	gas		Me	didor de bio	ogas
	ENERO'18		F	FEBRERO'1	8		MARZO'18	}	_	ABRIL'18			MAYO'18				JUNIO'18	
FIT-1	1001	Totalizado	FIT-	1001	Totalizado	FIT-1	1001	Totalizado	FIT-1	1001	Totalizado	FIT-1001		Totalizado	F	TT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		I	Lec. Inicial	Lec. Final	
662,337	662,437	100	670,003	670,350	347	678,852	679,191	339	685,814	685,960	146	692,754	692,967	213		698,328	698,436	108
662,437	662,549	112	670,350	670,667	317	679,191	679,354	163	685,960	686,221	261	692,967	693,213	246		698,436	698,512	76
662,549	662,786	237	670,667	670,914	247	679,354	679,675	321	686,221	686,426	205	693,213	693,438	225		698,512	698,593	81
662,786	663,118	332	670,914	671,357	443	679,675	679,913	238	686,426	686,567	141	693,438	693,639	201		698,593	698,717	124
663,118	663,340	222	671,357	671,675	318	679,913	680,146	233	686,567	686,776	209	693,639	693,930	291		698,717	698,788	71
663,340	663,639	299	671,675	672,188	513	680,146	680,418	272	686,776	686,890	114	693,930	694,070	140		698,788	698,921	133
663,639	663,859	220	672,188	672,541	353	680,418	680,625	207	686,890	687,165	275	694,070	694,391	321		698,921	699,031	110
663,859	664,066	207	672,541	672,852	311	680,625	680,866	241	687,165	687,375	210	694,391	694,643	252		699,031	699,146	115
664,066	664,206	140	672,852	673,192	340	680,866	680,992	126	687,375	687,475	100	694,643	694,810	167		699,146	699,266	120
664,206	664,654	448	673,192	673,475	283	680,992	681,271	279	687,475	687,732	257	694,810	695,019	209		699,266	699,336	70
664,654	664,825	171	673,475	673,867	392	681,271	681,405	134	687,732	687,964	232	695,019	695,225	206		699,336	699,422	86
664,825	665,377	552	673,867	674,047	180	681,405	681,706	301	687,964	688,194	230	695,225	695,452	227		699,422	699,567	145
665,377	665,577	200	674,047	674,421	374	681,706	681,943	237	688,194	688,428	234	695,452	695,707	255		699,567	699,674	107
665,577	665,761	184	674,421	674,678	257	681,943	682,205	262	688,428	688,590	162	695,707	695,826	119		699,674	699,850	176
665,761	665,948	187	674,678	674,929	251	682,205	682,458	253	688,590	688,761	171	695,826	696,018	192		699,850	699,932	82
665,948	666,213	265	674,929	675,256	327	682,458	682,737	279	688,761	689,009	248	696,018	696,170	152		699,932	700,086	154
666,213	666,559	346	675,256	675,575	319	682,737	682,846	109	689,009	689,140	131	696,170	696,239	69		700,086	700,287	201
666,559	666,740	181	675,575	675,778	203	682,846	683,104	258	689,140	689,824	684	696,239	696,425	186		700,287	700,390	103
666,740	667,233	493	675,778	676,320	542	683,104	683,226	122	689,824	689,870	46	696,425	696,636	211		700,390	700,549	159
667,233	667,410	177	676,320	676,513	193	683,226	683,463	237	689,870	689,920	50	696,636	696,795	159		700,549	700,681	132
667,410	667,780	370	676,513	676,915	402	683,463	683,660	197	689,920	690,134	214	696,795	696,920	125		700,681	700,740	59
667,780	667,934	154	676,915	677,131	216	683,660	683,799	139	690,134	690,501	367	696,920	697,061	141		700,740	700,909	169
667,934	668,208	274	677,131	677,421	290	683,799	683,970	171	690,501	690,648	147	697,061	697,235	174		700,909	701,089	180
668,208	668,352	144	677,421	677,716	295	683,970	684,130	160	690,648	690,957	309	697,235	697,394	159		701,089	701,125	36
668,352	668,645	293	677,716	678,022	306	684,130	684,394	264	690,957	691,133	176	697,394	697,506	112		701,125	701,286	161
668,645	668,849	204	678,022	678,231	209	684,394	684,685	291	691,133	691,463	330	697,506	697,640	134		701,286	701,345	59
668,849	669,007	158	678,231	678,683	452	684,685	684,804	119	691,463	691,821	358	697,640	697,810	170		701,345	701,407	62
669,007	669,242	235	678,683	678,852	169	684,804	685,047	243	691,821	692,090	269	697,810	697,898	88		701,407	701,478	71
669,242	669,489	247				685,047	685,278	231	692,090	692,484	394	697,898	698,028	130		701,478	701,541	63
669,489	669,820	331				685,278	685,412	134	692,484	692,754	270	698,028	698,210	182		701,541	701,609	68
669,820	670,003	183				685,412	685,814	402	692,754			698,210	698,328	118		701,609		
Total Nm³		7,666	Total Nm³		8,849	Total Nm³		6,962	Total Nm³		6,940	Total Nm³		5,574	-	Total Nm ³		3,281

Me	edidor de bio	gas		Me	edidor de bio	ogas		Me	didor de bio	gas		Me	didor de bio	ogas		Me	didor de bio	gas	Me	didor de bio	gas
	JULIO'18				AGOSTO'1	8			SEP'18				OCT'18				NOV'18			DIC'18	
FIT-1001		Totalizado		FIT-1001		Totalizado)	FIT-	1001	Totalizado)	FIT-1001		Totalizado)	FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
701,609	701,689	80		706,670	706,791	121		710,250	710,399	149		713,222	713,346	124		718,834	719,091	257	727,100	727,370	270
701,689	701,845	156		706,791	706,901	110		710,399	710,509	110		713,346	713,502	156		719,091	719,261	170	727,370	727,773	403
701,845	701,992	147		706,901	707,057	156		710,509	710,614	105		713,502	713,627	125		719,261	719,484	223	727,773	727,993	220
701,992	702,212	220		707,057	707,121	64		710,614	710,644	30		713,627	713,744	117		719,484	719,781	297	727,993	728,239	246
702,212	702,403	191		707,121	707,270	149		710,644	710,704	60		713,744	713,944	200		719,781	720,242	461	728,239	728,356	117
702,403	702,529	126		707,270	707,425	155		710,704	710,730	26		713,944	714,050	106		720,242	720,478	236	728,356	728,795	439
702,529	702,788	259		707,425	707,525	100		710,730	710,788	58		714,050	714,133	83		720,478	720,515	37	728,795	729,053	258
702,788	702,959	171		707,525	707,663	138		710,788	710,792	4		714,133	714,290	157		720,515	720,827	312	729,053	729,281	228
702,959	703,261	302		707,663	707,834	171		710,792	710,825	33		714,290	714,492	202		720,827	721,144	317	729,281	729,541	260
703,261	703,488	227		707,834	707,979	145		710,825	710,933	108		714,492	714,646	154		721,144	721,352	208	729,541	729,693	152
703,488	703,679	191		707,979	708,165	186		710,933	711,061	128		714,646	714,822	176		721,352	721,633	281	729,693	729,928	235
703,679	703,849	170		708,165	708,338	173		711,061	711,180	119		714,822	715,014	192		721,633	721,763	130	729,928	730,161	233
703,849	703,996	147		708,338	708,411	73		711,180	711,354	174		715,014	715,105	91		721,763	722,012	249	730,161	730,349	188
703,996	704,186	190		708,411	708,543	132		711,354	711,565	211		715,105	715,222	117		722,012	722,276	264	730,349	730,609	260
704,186	704,378	192		708,543	708,651	108		711,565	711,603	38		715,222	715,417	195		722,276	722,660	384	730,609	730,766	157
704,378	704,446	68		708,651	708,722	71		711,603	711,733	130		715,417	715,584	167		722,660	723,146	486	730,766	731,077	311
704,446	704,598	152		708,722	708,772	50		711,733	712,034	301		715,584	715,773	189		723,146	723,535	389	731,077	731,213	136
704,598	704,775	177		708,772	709,000	228		712,034	712,063	29		715,773	715,982	209		723,535	723,767	232	731,213	731,555	342
704,775	704,941	166		709,000	709,175	175		712,063	712,137	74		715,982	716,187	205		723,767	724,148	381	731,555	731,676	121
704,941	705,279	338		709,175	709,354	179		712,137	712,250	113		716,187	716,259	72		724,148	724,293	145	731,676	731,967	291
705,279	705,438	159		709,354	709,423	69		712,250	712,346	96		716,259	716,521	262		724,293	724,368	75	731,967	732,103	136
705,438	705,733	295		709,423	709,575	152		712,346	712,433	87		716,521	716,864	343		724,368	724,723	355	732,103	732,413	310
705,733	705,912	179		709,575	709,654	79		712,433	712,575	142		716,864	717,045	181		724,723	725,003	280	732,413	732,525	112
705,912	705,973	61		709,654	709,714	60		712,575	712,630	55		717,045	717,269	224		725,003	725,201	198	732,525	732,881	356
705,973	705,989	16		709,714	709,755	41		712,630	712,758	128		717,269	717,641	372		725,201	725,670	469	732,881	733,044	163
705,989	706,245	256	1	709,755	709,789	34	1	712,758	712,858	100		717,641	717,967	326		725,670	725,864	194	733,044	733,479	435
706,245	706,352	107	1	709,789	709,793	4	1	712,858	712,905	47		717,967	718,114	147		725,864	726,204	340	733,479	733,602	123
706,352	706,406	54		709,793	709,864	71		712,905	713,029	124		718,114	718,358	244		726,204	726,432	228	733,602	733,887	285
706,406	706,454	48		709,864	709,978	114		713,029	713,159	130		718,358	718,623	265		726,432	726,689	257	733,887	734,099	212
706,454	706,604	150		709,978	710,096	118		713,159	713,222	63		718,623	718,792	169		726,689	727,100	411	734,099	734,360	261
706,604	706,670	66		710,096	710,250	154		713,222				718,792	718,834	42		727,100	-		734,360	734,589	229
Total Nm³		5,061		Total Nm³		3,580		Total Nm³		2,972		Total Nm³		5,612		Total Nm³		8,266	Total Nm³		7,489

М	edidor de biog	as	M	edidor de bio	gas	Me	edidor de bio	gas	Me	edidor de bio	gas	Me	didor de bio	gas	М	edidor de bio	ogas
	ENERO'19		-	FEBRERO'1	9		MARZO'19)		ABRIL'19			MAYO'19			JUNIO'19	
FIT-1	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
734,589	734,750	161	741,935	742,250	315	747,853	747,945	92	753,936	754,061	125	760,194	760,297	103	762,909	763,118	209
734,750	734,904	154	742,250	742,426	176	747,945	748,158	213	754,061	754,390	329	760,297	760,368	71	763,118	763,118	0
734,904	735,050	146	742,426	742,822	396	748,158	748,302	144	754,390	754,701	311	760,368	760,470	102	763,118	763,174	56
735,050	735,184	134	742,822	743,054	232	748,302	748,690	388	754,701	754,858	157	760,470	760,531	61	763,174	763,384	210
735,184	735,431	247	743,054	743,246	192	748,690	748,991	301	754,858	755,170	312	760,531	760,636	105	763,384	763,612	228
735,431	735,534	103	743,246	743,460	214	748,991	749,116	125	755,170	755,330	160	760,636	760,716	80	763,612	763,825	213
735,534	735,916	382	743,460	743,621	161	749,116	749,266	150	755,330	755,545	215	760,716	760,784	68	763,825	764,009	184
735,916	736,110	194	743,621	743,884	263	749,266	749,422	156	755,545	755,815	270	760,784	760,882	98	764,009	764,009	0
736,110	736,456	346	743,884	744,240	356	749,422	749,590	168	755,815	755,953	138	760,882	760,969	87	764,009	764,318	309
736,456	736,599	143	744,240	744,442	202	749,590	749,831	241	755,953	756,276	323	760,969	761,047	78	764,318	764,525	207
736,599	736,993	394	744,442	744,881	439	749,831	749,983	152	756,276	756,458	182	761,047	761,100	53	764,525	764,687	162
736,993	737,133	140	744,881	745,074	193	749,983	750,189	206	756,458	756,790	332	761,100	761,236	136	764,687	765,070	383
737,133	737,467	334	745,074	745,364	290	750,189	750,491	302	756,790	756,909	119	761,236	761,332	96	765,070	765,070	0
737,467	737,717	250	745,364	745,539	175	750,491	750,570	79	756,909	757,092	183	761,332	761,392	60	765,070	765,603	533
737,717	738,102	385	745,539	745,824	285	750,570	750,835	265	757,092	757,318	226	761,392	761,495	103	765,603	765,876	273
738,102	738,312	210	745,824	745,949	125	750,835	750,962	127	757,318	757,438	120	761,495	761,560	65	765,876	766,056	180
738,312	738,477	165	745,949	746,150	201	750,962	751,237	275	757,438	757,609	171	761,560	761,698	138	766,056	766,354	298
738,477	738,830	353	746,150	746,388	238	751,237	751,438	201	757,609	757,865	256	761,698	761,754	56	766,354	766,442	88
738,830	738,985	155	746,388	746,502	114	751,438	751,591	153	757,865	757,988	123	761,754	761,811	57	766,442	766,596	154
738,985	739,364	379	746,502	746,741	239	751,591	751,741	150	757,988	758,243	255	761,811	761,988	177	766,596	766,850	254
739,364	739,513	149	746,741	746,869	128	751,741	751,912	171	758,243	758,475	232	761,988	762,031	43	766,850	766,850	0
739,513	739,810	297	746,869	746,936	67	751,912	752,021	109	758,475	758,697	222	762,031	762,072	41	766,850	767,094	244
739,810	739,967	157	746,936	747,058	122	752,021	752,157	136	758,697	758,889	192	762,072	762,165	93	767,094	767,509	415
739,967	740,203	236	747,058	747,216	158	752,157	752,294	137	758,889	758,996	107	762,165	762,226	61	767,509	767,902	393
740,203	740,431	228	747,216	747,312	96	752,294	752,426	132	758,996	759,244	248	762,226	762,277	51	767,902	767,996	94
740,431	740,712	281	747,312	747,480	168	752,426	752,777	351	759,244	759,466	222	762,277	762,277	0	767,996	768,270	274
740,712	740,873	161	747,480	747,849	369	752,777	752,972	195	759,466	759,748	282	762,277	762,412	135	768,270	768,490	220
740,873	741,249	376	747,849	747,853	4	752,972	753,333	361	759,748	759,911	163	762,412	762,574	162	768,490	768,986	496
741,249	741,576	327	747,853			753,333	753,496	163	759,911	760,002	91	762,574	762,764	190	768,986	769,202	216
741,576	741,770	194				753,496	753,715	219	760,002	760,194	192	762,764	762,842	78	769,202	769,631	429
741,770	741,935	165				753,715	753,936	221	760,194			762,842					
Total Nm³		7,346	Total Nm³		5,918	Total Nm ³		6,083	Total Nm³		6,258	Total Nm³		2,648	Total Nm³		6,722

Me	edidor de bio	ogas	Me	edidor de bio	ogas	Me	didor de bio	gas		Me	didor de bio	gas		Me	didor de biog	gas	Me	didor de bio	ogas
	JULIO'19			AGOSTO'1	9		SEP'19				OCT19				NOV'19			DIC'19	
FIT-1001		Totalizado	FIT-1001		Totalizado	FIT-	1001	Totalizado)	FIT-1001		Totalizado		FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
769,631	770,094	463	776,758	777,032	274	784,153	784,429	276		789,153	789,314	161		794,308	794,549	241	799,143	799,404	261
770,094	770,475	381	777,032	777,239	207	784,429	784,539	110		789,314	789,491	177		794,549	794,745	196	799,404	799,534	130
770,475	770,673	198	777,239	777,708	469	784,539	784,747	208		789,491	789,680	189		794,745	794,927	182	799,534	799,700	166
770,673	770,837	164	777,708	777,946	238	784,747	784,969	222		789,680	789,818	138		794,927	795,163	236	799,700	800,025	325
770,837	771,219	382	777,946	778,427	481	784,969	785,119	150		789,818	790,019	201		795,163	795,256	93	800,025	800,113	88
771,219	771,569	350	778,427	778,781	354	785,119	785,347	228		790,019	790,137	118		795,256	795,446	190	800,113	800,304	191
771,569	771,742	173	778,781	778,972	191	785,347	785,450	103		790,137	790,266	129		795,446	795,680	234	800,304	800,498	194
771,742	771,891	149	778,972	779,397	425	785,450	785,667	217		790,266	790,440	174		795,680	795,792	112	800,498	800,736	238
771,891	772,160	269	779,397	779,648	251	785,667	785,865	198		790,440	790,532	92		795,792	795,963	171	800,736	800,885	149
772,160	772,460	300	779,648	779,798	150	785,865	785,995	130		790,532	790,729	197		795,963	796,179	216	800,885	801,126	241
772,460	772,677	217	779,798	779,798	0	785,995	786,126	131		790,729	790,926	197		796,179	796,350	171	801,126	801,232	106
772,677	772,920	243	779,798	780,084	286	786,126	786,226	100		790,926	791,197	271		796,350	796,471	121	801,232	801,446	214
772,920	773,098	178	780,084	780,284	200	786,226	786,355	129		791,197	791,321	124		796,471	796,814	343	801,446	801,726	280
773,098	773,260	162	780,284	780,530	246	786,355	786,548	193		791,321	791,541	220		796,814	796,890	76	801,726	802,030	304
773,260	773,260	0	780,530	780,679	149	786,548	786,718	170		791,541	791,798	257		796,890	797,172	282	802,030	802,163	133
773,260	773,557	297	780,679	780,948	269	786,718	786,936	218		791,798	791,908	110		797,172	797,465	293	802,163	802,390	227
773,557	773,751	194	780,948	781,091	143	786,936	786,958	22		791,908	792,102	194		797,465	797,599	134	802,390	802,491	101
773,751	773,868	117	781,091	781,219	128	786,958	787,054	96		792,102	792,237	135		797,599	797,778	179	802,491	802,759	268
773,868	774,118	250	781,219	781,408	189	787,054	787,255	201		792,237	792,410	173		797,778	797,944	166	802,759	802,930	171
774,118	774,284	166	781,408	781,555	147	787,255	787,578	323		792,410	792,569	159		797,944	798,006	62	802,930	803,251	321
774,284	774,378	94	781,555	781,937	382	787,578	787,744	166		792,569	792,756	187		798,006	798,053	47	803,251	803,418	167
774,378	774,603	225	781,937	782,163	226	787,744	787,851	107		792,756	792,861	105		798,053	798,102	49	803,418	803,546	128
774,603	774,743	140	782,163	782,359	196	787,851	787,915	64		792,861	793,039	178		798,102	798,193	91	803,546	803,615	69
774,743	774,998	255	782,359	782,626	267	787,915	788,065	150		793,039	793,210	171		798,193	798,347	154	803,615	803,749	134
774,998	775,111	113	782,626	782,882	256	788,065	788,296	231		793,210	793,326	116		798,347	798,452	105	803,749	803,836	87
775,111	775,512	401	782,882	783,224	342	788,296	788,435	139		793,326	793,499	173		798,452	798,597	145	803,836	803,968	132
775,512	775,725	213	783,224	783,379	155	788,435	788,665	230		793,499	793,658	159		798,597	798,681	84	803,968	804,119	151
775,725	776,273	548	783,379	783,649	270	788,665	788,777	112		793,658	793,754	96		798,681	798,834	153	804,119	804,327	208
776,273	0	-776,273	783,649	783,776	127	788,777	789,019	242		793,754	793,934	180		798,834	798,921	87	804,327	804,433	106
	0	0	783,776	783,978	202	789,019	789,153	134		793,934	794,150	216		798,921	799,143	222	804,433	804,635	202
	706,670	706,670	783,978	784,153	175	789,153				794,150	794,308	158		799,143			804,635	804,786	151
Total Nm³		-62,961	Total Nm³		7,395	Total Nm³		5,000		Total Nm³	_	5,155		Total Nm³		4,835	Total Nm³		5,643

М	Medidor de biogas				Medidor de biogas			Medidor de biogas			Me	didor de bio	gas	Medidor de biogas				
ENERO'20		FEBRERO				MARZO			ABRIL			MAYO			JUNIO'20			
FIT-1	001	Totalizado	FIT-	1001	Totalizado		FIT-	1001	Totalizado	FIT-	1001	Totalizado	FIT-1001		Totalizado	FIT-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final	
804,786	805,079	293	814,511	814,671	160		821,834	822,395	561	830,668	830,983	315	836,413	836,660	247	841,408	841,508	100
805,079	805,337	258	814,671	815,016	345		822,395	822,717	322	830,983	831,163	180	836,660	836,956	296	841,508	841,627	119
805,337	805,537	200	815,016	815,254	238		822,717	823,061	344	831,163	831,263	100	836,956	837,080	124	841,627	841,697	70
805,537	805,819	282	815,254	815,559	305		823,061	823,263	202	831,263	831,471	208	837,080	837,314	234	841,697	841,741	44
805,819	805,987	168	815,559	815,692	133		823,263	823,565	302	831,471	831,736	265	837,314	837,427	113	841,741	841,803	62
805,987	806,333	346	815,692	815,880	188		823,565	823,777	212	831,736	831,849	113	837,427	837,628	201	841,803	841,862	59
806,333	806,616	283	815,880	815,993	113		823,777	824,150	373	831,849	832,078	229	837,628	837,865	237	841,862	841,955	93
806,616	806,848	232	815,993	816,275	282		824,150	824,340	190	832,078	832,242	164	837,865	837,880	15	841,955	842,021	66
806,848	807,153	305	816,275	816,561	286		824,340	824,709	369	832,242	832,333	91	837,880	838,216	336	842,021	842,115	94
807,153	807,403	250	816,561	816,712	151		824,709	824,869	160	832,333	832,512	179	838,216	838,446	230	842,115	842,212	97
807,403	807,802	399	816,712	816,954	242		824,869	825,148	279	832,512	832,649	137	838,446	838,519	73	842,212	842,334	122
807,802	808,010	208	816,954	817,140	186		825,148	825,456	308	832,649	832,734	85	838,519	838,702	183	842,334	842,416	82
808,010	808,365	355	817,140	817,231	91		825,456	825,516	60	832,734	832,831	97	838,702	838,887	185	842,416	842,477	61
808,365	808,576	211	817,231	817,405	174		825,516	825,882	366	832,831	832,957	126	838,887	839,021	134	842,477	842,557	80
808,576	809,080	504	817,405	817,690	285		825,882	826,326	444	832,957	833,167	210	839,021	839,210	189	842,557	842,591	34
809,080	809,253	173	817,690	817,872	182		826,326	826,541	215	833,167	833,305	138	839,210	839,428	218	842,591	842,678	87
809,253	809,724	471	817,872	818,207	335		826,541	826,933	392	833,305	833,603	298	839,428	839,550	122	842,678	842,704	26
809,724	810,036	312	818,207	818,444	237		826,933	827,121	188	833,603	833,754	151	839,550	839,720	170	842,704	842,754	50
810,036	810,375	339	818,444	818,756	312		827,121	827,495	374	833,754	834,059	305	839,720	839,915	195	842,754	842,793	39
810,375	810,900	525	818,756	818,962	206		827,495	827,740	245	834,059	834,402	343	839,915	840,039	124	842,793	842,830	37
810,900	810,961	61	818,962	819,303	341		827,740	827,939	199	834,402	834,559	157	840,039	840,250	211	842,830	842,874	44
810,961	811,537	576	819,303	819,513	210		827,939	828,279	340	834,559	834,813	254	840,250	840,376	126	842,874	842,922	48
811,537	811,980	443	819,513	819,995	482		828,279	828,491	212	834,813	834,962	149	840,376	840,581	205	842,922	842,956	34
811,980	812,196	216	819,995	820,248	253		828,491	828,785	294	834,962	835,255	293	840,581	840,761	180	842,956	842,989	33
812,196	812,762	566	820,248	820,661	413		828,785	828,950	165	835,255	835,510	255	840,761	840,843	82	842,989	843,040	51
812,762	813,045	283	820,661	820,873	212		828,950	829,267	317	835,510	835,665	155	840,843	840,969	126	843,040	843,070	30
813,045	813,341	296	820,873	821,314	441		829,267	829,473	206	835,665	835,900	235	840,969	841,035	66	843,070	843,102	32
813,341	813,767	426	821,314	821,564	250		829,473	829,835	362	835,900	836,030	130	841,035	841,114	79	843,102	843,131	29
813,767	813,953	186	821,564	821,834	270		829,835	830,052	217	836,030	836,286	256	841,114	841,202	88	843,131	843,158	27
813,953	814,154	201	821,834				830,052	830,433	381	836,286	836,413	127	841,202	841,320	118	843,158	843,208	50
814,154	814,511	357					830,433	830,668	235	836,413			841,320	841,408	88	843,208		
Total Nm³		9,725	Total Nm³		7,323		Total Nm³		8,834	Total Nm³		5,745	Total Nm³		4,995	Total Nm³	1,800	1,800

Medidor de biogas		Medidor de biogas			Medidor de biogas				Medidor de biogas				Medidor de biogas				Medidor de biogas			
	JULIO'20		AGOSTO'20			SEP'20				OCT20				NOV'20				DIC'20		
FIT-1001		Totalizado	FIT-1001		Totalizado	FIT-	1001	Fotalizado		FIT-1001		Totalizado		FIT-1001		Totalizado	FI	T-1001		Totalizado
Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final		Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final			Lec. Inicial	Lec. Final		Le	ec. Inicial	Lec. Final	
843,208	843,237	29	846,809	847,029	220	852,138	852,364	226		856,377	856,479	102		859,720	859,856	136		863,062		-863,062
843,237	843,282	45	847,029	847,260	231	852,364	852,575	211		856,479	856,573	94		859,856	859,958	102				0
843,282	843,301	19	847,260	847,465	205	852,575	852,733	158		856,573	856,672	99		859,958	860,051	93				0
843,301	843,316	15	847,465	847,719	254	852,733	852,911	178		856,672	856,787	115		860,051	860,165	114				0
843,316	843,336	20	847,719	847,890	171	852,911	853,119	208		856,787	856,866	79		860,165	860,290	125				0
843,336	843,355	19	847,890	847,993	103	853,119	853,313	194		856,866	856,961	95		860,290	860,412	122				0
843,355	843,429	74	847,993	848,180	187	853,313	853,470	157		856,961	857,051	90		860,412	860,508	96				0
843,429	843,512	83	848,180	848,431	251	853,470	853,606	136		857,051	857,140	89		860,508	860,660	152				0
843,512	843,563	51	848,431	848,626	195	853,606	853,734	128		857,140	857,207	67		860,660	860,746	86				0
843,563	843,660	97	848,626	848,775	149	853,734	853,887	153		857,207	857,322	115		860,746	860,844	98				0
843,660	843,766	106	848,775	848,879	104	853,887	854,025	138		857,322	857,429	107		860,844	860,928	84				0
843,766	843,870	104	848,879	849,114	235	854,025	854,144	119		857,429	857,539	110		860,928	861,019	91				0
843,870	843,998	128	849,114	849,481	367	854,144	854,280	136		857,539	857,672	133		861,019	861,133	114				0
843,998	844,164	166	849,481	849,590	109	854,280	854,392	112		857,672	857,768	96		861,133	861,236	103				0
844,164	844,319	155	849,590	849,672	82	854,392	854,535	143		857,768	857,891	123		861,236	861,378	142			864,715	864,715
844,319	844,319	0	849,672	849,935	263	854,535	854,668	133		857,891	858,000	109		861,378	861,499	121		864,715		-864,715
844,319	844,441	122	849,935	850,100	165	854,668	854,811	143		858,000	858,109	109		861,499	861,628	129				0
844,441	844,654	213	850,100	850,199	99	854,811	854,950	139		858,109	858,229	120		861,628	861,734	106				0
844,654	844,934	280	850,199	850,332	133	854,950	855,089	139		858,229	858,357	128		861,734	861,838	104				0
844,934	845,126	192	850,332	850,463	131	855,089	855,210	121		858,357	858,491	134		861,838	861,931	93				0
845,126	845,291	165	850,463	850,565	102	855,210	855,332	122		858,491	858,599	108		861,931	862,075	144				0
845,291	845,479	188	850,565	850,668	103	855,332	855,449	117		858,599	858,715	116		862,075	862,188	113				0
845,479	845,646	167	850,668	850,795	127	855,449	855,569	120		858,715	858,866	151		862,188	862,316	128				0
845,646	845,809	163	850,795	850,861	66	855,569	855,696	127		858,866	858,987	121		862,316	862,437	121				0
845,809	845,809	0	850,861	851,043	182	855,696	855,805	109		858,987	859,097	110		862,437	862,530	93				0
845,809	845,979	170	851,043	851,104	61	855,805	855,928	123		859,097	859,196	99		862,530	862,645	115				0
845,979	846,125	146	851,104	851,296	192	855,928	856,086	158		859,196	859,285	89		862,645	862,757	112				0
846,125	846,299	174	851,296	851,555	259	856,086	856,218	132		859,285	859,376	91		862,757	862,868	111				0
846,299	846,586	287	851,555	851,749	194	856,218	856,308	90		859,376	859,472	96		862,868	862,988	120				0
846,586	846,586	0	851,749	852,038	289	856,308	856,377	69		859,472	859,572	100		862,988	863,062	74				0
846,586	846,809	223	852,038	852,138	100	856,377				859,572	859,720	148							866,862	866,862
Total Nm³		3,601	Total Nm³		5,329	Total Nm³		4,239		Total Nm³		3,343		Total Nm³		3,342	Т	otal Nm³		3,800